数学建模课引--建立函数模型解决实际问题课件

上传人:494895****12427 文档编号:252909145 上传时间:2024-11-22 格式:PPTX 页数:29 大小:2.08MB
返回 下载 相关 举报
数学建模课引--建立函数模型解决实际问题课件_第1页
第1页 / 共29页
数学建模课引--建立函数模型解决实际问题课件_第2页
第2页 / 共29页
数学建模课引--建立函数模型解决实际问题课件_第3页
第3页 / 共29页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,数学建模,建立函数模型解决实际问题,数学建模,1,一、数学建模简介,1,.,数学建模的含义,数学建模就是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建数学模型解决问题的过程,.,数学建模搭建了数学与外部世界联系的桥梁,是数学应用的重要形式,数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力,.,一、数学建模简介,2,2,.,数学建模的过程,建立函数模型的过程,:,首先要对实际问题中的变化过程进行分析,析出其中的常量、变量及其相互关系,;,明确其运动变化的基本特征,从而确定它的运动变化类型,;,然后根据分析结果,选择适当的函数类型构建数学模型,将实际问题化归为数学问题,;,通过运算、推理,求解函数模型,;,最后利用函数模型的解说明实际问题的变化规律,达到解决问题的目的,.,在构建函数模型时,经常会遇到没有现成数据可用的情况,这时就需要先收集数据,.,2.数学建模的过程,3,上述过程可以概括为,:,上述过程可以概括为:,4,3,.,数学建模活动的要求,(1),组建合作团队,:,数学建模活动需要团队协作,.,首先在班级中组成,3,5,人的研究小组,每位同学参加其中一个小组,.,在小组内,要确定一个课题负责人,使每位成员都有明确的分工,;,然后拟定研究课题、确定研究方案、规划研究步骤、编制研究手册,最后在班里进行一次开题报告,.,(2),开展研究活动,:,根据开题报告所规划的研究步骤,通过背景分析、收集数据、数据分析、数学建模、获得结论等过程,完成课题研究,.,在研究过程中,可以借助信息技术解决问题,.,3.数学建模活动的要求,5,(3),撰写研究报告,:,以小组为单位,撰写一份研究报告,.,(4),交流展示,:,对同一个课题,先由,3,4,个小组进行小组交流,每个小组都展示自己的研究成果,相互借鉴、取长补短,.,在小组研究报告的基础上形成大组的研究报告,.,选定代表,制定向全班汇报的演示文稿,.,(5),与老师一起进行全班研究成果的展示与交流,在各组代表作研究报告的基础上,通过质疑、辩论、评价,总结成果,分享体会,分析不足,开展自我评价、同学评价和老师评价,完成本次数学建模活动,.,(3)撰写研究报告:以小组为单位,撰写一份研究报告.,6,二、建立函数模型解决实际问题实例,【典例,1,】为了研究怎样烧开水最省燃气,实验得以下数据,:,燃气灶旋钮角度不同时烧开一壶水所需燃气量,二、建立函数模型解决实际问题实例,7,通过上表分析,:,燃气灶旋钮角度是多少时,烧开一壶水所需燃气最少,最少是多少,?,通过上表分析:燃气灶旋钮角度是多少时,烧开一壶水所需燃气最少,8,分析,数据,烧,开一壶水所需的燃气量与燃气灶旋钮角度有关,即烧开一壶水所需的燃气量是旋转角度的函数,但是没有现成的函数模型,因此可以根据给出的数据画出散点图,利用图象直观地分析这组数据的变化规律,从而帮助我们选择函数模型,.,分析数据 烧开一壶水所需的燃气量与燃气灶旋钮角度有关,即烧,9,由图可以看出,5,个点显示出随着旋钮角度逐渐增大,燃气量有一个从大到小又从小到大的过程,.,在我们学习过的函数图象中,二次函数的图象与之最接近,所以可以用二次函数,y=ax,2,+bx+c,(,a,0),近似地表示这种变化,(,其中,x,表示旋钮角度,y,表示燃气量,),.,由图可以看出,5个点显示出随着旋钮角度逐渐增大,燃气量有一个,10,建立,模型,设,函数解析式为,y=ax,2,+bx+c,(,a,0),取三对数据即可求出解析式的系数,不妨取,(18,0,.,130),(36,0,.,122),(90,0,.,172),得方程组,建立模型 设函数解析式为y=ax2+bx+c(a0),取,11,检验,模型,将,已知的表中数据代入上述得到的函数解析式,或者画出函数的图象,可以发现,这个函数模型与实际数据基本吻合,这说明它能较好地反映烧开一壶水所需的燃气量随燃气灶旋钮角度的变化规律,.,检验模型 将已知的表中数据代入上述得到的函数解析式,或者画,12,求解,问题,求,燃气量最少时的旋钮角度,实际上是求函数,y=,1,.,903 3,10,-,5,x,2,-,1,.,472 2,10,-,3,x+,1,.,503 3,10,-,1,的最小值点,x,0,.,求解问题 求燃气量最少时的旋钮角度,实际上是求函数y=1.,13,【变式训练,1,】某地区不同身高的未成年男性的体重平均值如下表,:,如果体重超过相同身高男性平均值的,1,.,2,倍为偏胖,低于,0,.,8,倍为偏瘦,那么现有这个地区某中学一个男生身高,175 cm,体重,78 kg,他的体重是否正常,?,【变式训练1】某地区不同身高的未成年男性的体重平均值如下表,14,答案,:,分析数据 该地区未成年男性的体重与身高之间存在函数关系,但没有现成的函数模型,因此可以根据给出的数据画出散点图,利用图象直观地分析这组数据的变化规律,从而帮助我们选择函数模型,.,以身高,x,为横坐标,体重,y,为纵坐标,画,出散点图如图所示,.,根据散点图中点的分布情况,可考虑用,y=a,b,x,作为刻画这个地区未成年男性的体重与身高关系的函数模型,.,答案:分析数据 该地区未成年男性的体重与身高之间存在函数关系,15,数学建模课引-建立函数模型解决实际问题课件,检验模型,作出上述函数的图象,(,图略,),之后,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系,.,求解问题,将,x=,175,代入,y=,2,1,.,02,x,得,y=,2,1,.,02,175,由计算器可算得,y,63,.,98,因为,78,63,.,981,.,22,1,.,2,所以这个男性体型偏胖,.,检验模型 作出上述函数的图象(图略)之后,可以发现,这个函数,【典例,2,】,个体经营者把开始六个月试销,A,B,两种商品的逐月投资与所获纯利润列成下表,:,该经营者准备下月投入,12,万元经营这两种产品,但不知投入,A,B,两种商品各多少钱才最合算,.,请你帮助制定一个资金投入方案,使该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润,.,(,结果精确到,0,.,1),【典例2】个体经营者把开始六个月试销A,B两种商品的逐月投,分析,数据,由,表中数据可知,该个体经营者试销,A,B,两种商品所获纯利润与投资金额有关,随投资金额的变化而变化,二者之间存在某种函数关系,但这种函数关系没有明确给出,我们可以根据给出的数据画出散点图,借助散点图直观地分析这组数据的变化规律,从而帮助我们选择函数模型,.,以投资额,x,为横坐标,纯利润,y,为纵坐标,在平面直角坐标系中画出散点图如下图,.,分析数据 由表中数据可知,该个体经营者试销A,B两种商品所,19,由散点图可知,可以用二次函数模型近似表示投资,A,种商品所获纯利润与投资额的关系,用一次函数模型近似表示投资,B,种商品所获纯利润与投资额的关系,.,由散点图可知,可以用二次函数模型近似表示投资A种商品所获纯利,20,建立,模型,设,投资,A,种商品所获纯利润,x,与投资额,y,的函数解析式为,y=-a,(,x-,4),2,+,2(,a,0),把,x=,1,y=,0,.,65,代入式,得,0,.,65,=-a,(1,-,4),2,+,2,解得,a=,0,.,15,.,故前六个月所获纯利润关于月投资,A,种商品的金额的函数关系可近似地用,y=-,0,.,15(,x-,4),2,+,2,表示,设投资,B,种商品所获纯利润,x,与投资额,y,的函数解析式为,y=bx.,再把,x=,4,y=,1,代入式得,b=,0,.,25,故前六个月所获纯利润关于月投资,B,种商品的金额的函数关系可近似地用,y=,0,.,25,x,表示,.,建立模型 设投资A种商品所获纯利润x与投资额y的函数解析式,21,检验模型,将已知的表中数据代入上述得到的函数解析式,或者画出函数的图象,可以发现,这两个函数模型与实际数据基本吻合,这说明它们能较好地反映投资两种商品所获纯利润与投资额的关系,.,检验模型 将已知的表中数据代入上述得到的函数解析式,或者画,22,求解问题,令下月投入,A,B,商品的资金分别为,x,A,x,B,总利润为,W,得,求解问题 令下月投入A,B商品的资金分别为xA,xB,总利,23,【变式训练,2,】某商场经营一批进价为,12,元,/,个的小商品,在,4,天的试销中,对此商品的单价,x,(,单位,:,元,),与相应的日销量,y,(,单位,:,个,),作了统计,其数据如下,:,试确定该商场应将此商品单价定为多少元,才能使日销售利润最大,?,并求出最大利润,.,【变式训练2】某商场经营一批进价为12元/个的小商品,在4,24,答案,:,分析数据 由表中数据可知,日销售量随单价的变化而变化,二者之间存在函数关系,但这种函数关系没有明确给出,我们可以根据给出的数据画出散点图,借助散点图直观地分析这组数据的变化规律,从而帮助我们选择函数模型,.,由散点图可知,日销售量,y,与单价,x,的关系可用一次函数模型来近似表示,.,答案:分析数据 由表中数据可知,日销售量随单价的变化而变化,25,建立模型 设日销售量,y,与单价,x,的函数解析式为,y=kx+b(k0).,当,x=16,时,y=42;,当,x=20,时,y=30.,由,-,得,-12=4k,解得,k=-3.,代入,解得,b=90.,所以,y=-3x+90.,建立模型 设日销售量y与单价x的函数解析式为y=kx+b(k,26,检验模型 将表中数据代入所得解析式进行验证,可以发现数据完全吻合,所以日销售量关于单价的函数解析式,为,y,=-,3,x+,90,.,求解问题 因为日销售,利润,P,=,(,x-,12)(,-,3,x+,90),=-,3,x,2,+,126,x-,1 080,=-,3(,x-,21),2,+,243,.,因为二次函数图象开口向下,所以当,x=,21,时,P,最大为,243,.,即商品单价为,21,元时,利润最大,最大值为,243,元,.,检验模型 将表中数据代入所得解析式进行验证,可以发现数据完全,27,数学建模活动,某企业所生产的产品由其销售部的员工销售。由于生产力等方面的因素,销售部的每位员工每月最多可以销售价值,500,万元的产品,其月工资由基本工资,8000,元以及绩效工资两部分组成,且需满足下列条件:,绩效工资金额随着员工当月销售产品的总价值的增加而增加且不超过当其月
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!