资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,命题与四种命题,高二数学 选修2-1,第一章 常用逻辑用语,2021-12-05,歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高地往前走。一边大声说道:“我从来不给傻子让路!而对如此的为难的局面,但只是歌德笑容可掏,谦恭的闪在一旁,一边有礼貌答复道“呵呵,我可恰恰相反,结果故作聪明的批评家,反倒自讨没趣。,你能分析此故事中歌德与批评家的言行语句吗?,第一章,常用逻辑用语,“数学是思维的科学,逻辑是研究思维形式和规律的科学.,逻辑用语是我们必不可少的工具.,通过学习和使用常用逻辑用语,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简捷性.,命题及其关系,1.1.1 命题,思考,以下语句的表述形式有什么特点?你能判断,它们的真假吗?,1 125;,2 3是12的约数;,3 0.5是整数;,4对顶角相等;,53 能被2整除;,6假设x2=1,那么x=1.,语句都是陈述句,,并且可以判断真假。,命题的概念,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。,判断为真的语句叫做真命题。,判断为假的语句叫做假命题。,理解:,1命题定义的核心是判断,切记:判断的标准 必须确定,判断的结果可真可假,但真假必居其一。,2含有变量且在未给定变量的值之前无法确定语句的真假。,1 125;2 3是12的约数;,3 0.5是整数;4对顶角相等;,53 能被2整除;6假设x2=1,那么x=1.,用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题?,7,是,23,的约数吗,?,X5.,-2a3,。,x4,。,看看以下语句是不是命题?,不是疑问句,不是疑问句,不是感慨句,是否认陈述句,是肯定陈述句,不是开语句,例1 判断下面的语句是否为命题?假设是命题,指出它的真假。,(1)空集是任何集合的子集.,(2)假设整数a是素数,那么a是奇数.,(3)指数函数是增函数吗?,(4)假设平面上两条直线不相交,那么这两条直线平行.,(5),(6)x15.,是,真,是,真,是,假,是,假,不是命题,不是命题,练习 判断以下语句是否是命题.,1求证 是无理数。,2,3你是高二学生吗?,4并非所有的人都喜欢苹果。,5一个正整数不是质数就是合数。,6假设 ,那么,7x+30.,(1)(3)(7)不是命题,(2)(4)(5)(6)是命题。,“假设p那么q形式的命题,命题“假设整数a是素数,那么a是奇数。具有“假设p那么q的形式。,q,p,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。,“假设p那么q形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q“只要p,就有q等形式。,其中p和q可以是命题也可以不是命题.,“假设p那么q形式的命题的优点是条件与结论容易区分,缺点是太格式化且不灵活.,“假设p那么q形式的命题的书写,了解命题表示的判断,明确与判断有关的条件与结论。,对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句,确定条件与结论。,如命题:“垂直于同一条直线的两个平面平行。,写成“假设p那么q的形式为:,假设两个平面垂直于同一条直线,那么这两个平面平行。,例2 指出以下命题中的条件p和结论q:,假设整数a能被2整除,那么a是偶数;,菱形的对角线互相垂直且平分。,解:1)条件p:整数a能被2整除,,结论q:整数a 是偶数。,2)写成假设p,那么q 的形式:假设四边形是菱形,,那么它的对角线互相垂直且平分。,条件p:四边形是菱形,,结论q:四边形的对角线互相垂直且平分。,例3 把以下命题改写成“假设p那么q的形式,并判定真假。,(1)负数的平方是正数.,(2)偶函数的图像关于y轴对称.,(3)垂直于同一条直线的两条直线平行,(4)面积相等的两个三角形全等.,(5)对顶角相等.,真命题,真命题,假命题,假命题,真命题,练习,1、将命题“a0时,函数y=ax+b的值随x值的增加而增加改写成“p那么q的形式,并判断命题的真假。,解答:a0时,假设x增加,那么函数y=ax+b的值也随之,增加,它是真命题,在此题中,a0是大前提,应单独给出,不能把大前提也放在命题的条件局部内,2、把以下命题改写成“假设p,那么q的形式,并判断它们的真假.,1等腰三角形两腰的中线相等;,2偶函数的图象关于y轴对称;,3垂直于同一个平面的两个平面平行。,(1)假设三角形是等腰三角形,那么三角形两边上的中线相等。这是真命题。,(2)假设函数是偶函数,那么函数的图象关于y轴对称,这是真命题。,(3)假设两个平面垂直于同一平面,那么这两个平面互相平行。这是假命题。,命题及其关系,1.1.2 四种命题,以下四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?,假设f(x)是正弦函数,那么f(x)是周期函数;,假设f(x)是周期函数,那么f(x)是正弦函数;,假设f(x)不是正弦函数,那么f(x)不是周期函数;,假设f(x)不是周期函数,那么f(x)不是正弦函数。,观察命题(1)与命题(2)的条件和结论之间分别有什么关系?,假设f(x)是正弦函数,那么f(x)是周期函数;,假设f(x)是周期函数,那么f(x)是正弦函数;,互逆命题,:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。,原 命 题,:其中一个命题叫做原命题。,逆 命 题,:另一个命题叫做原命题的逆命题。,p,q,q,p,即 原命题:假设p,那么q,逆命题:假设q,那么p,例如,命题“同位角相等,两直线平行的逆命题是“两直线平行,同位角相等。,原命题与其逆命题的真假是否存在相关性呢?,观察命题(1)与命题(3)的条件和结论之间分别有什么关系?,假设f(x)是正弦函数,那么f(x)是周期函数;,3.假设f(x)不是正弦函数,那么f(x)不是周期函数.,p,q,p,原命题:假设p,那么q,q,为书写简便,常把条件p的否认和结论q的否认分别记作“p“q,否命题:假设p,那么q,互否命题 原命题 (原命题的)否命题,例如,命题“同位角相等,两直线平行的否命题是“同位角不相等,两直线不平行。,原命题与其否命题的真假是否存在相关性呢?,观察命题(1)与命题(4)的条件和结论之间分别有什么关系?,假设f(x)是正弦函数,那么f(x)是周期函数;,4.假设f(x)不是周期函数,那么f(x)不是正弦函数.,p,q,q,原命题:假设p,那么q,p,逆否命题:假设q,那么p,互为逆否命题,原命题 (原命题的)逆否命题,例如,命题“同位角相等,两直线平行的逆否命题是“两直线不平行,同位角不相等。,原命题与其逆否命题的真假是否存在相关性呢?,、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否认,那么这两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。,、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否认和条件的否认,那么这两个命题叫做互为逆否命题。,、互逆命题:如果第一个命题的条件或题设是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。,三个概念,原命题,逆命题,否命题,逆否命题,四种命题形式:,原命题:,逆命题:,否命题:,逆否命题:,假设 p,那么 q,假设 q,那么 p,假设p,那么q,假设q,那么p,判断正误,并说明理由:,(1)假设原命题是“对顶角相等,它的否命题是“对顶角不相等。,(2)假设原命题是“对顶角相等,它的否命题是“不成对顶关系的,两个角不相等。,否命题与命题的否认,否命题是用否认条件也否认结论的方式构成新命题。,命题的否认是逻辑联结词“非作用于判断,只否认结论不否认条件。,对于原命题:假设 p,那么 q 有,否命题:假设p,那么q。,命题的否认:假设 p,那么q。,例 设原命题是“当c 0 时,假设a b,那么ac bc,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:,解:,逆命题:当c 0 时,假设ac bc,那么a b,逆命题为真,否命题:当c 0 时,假设a b,那么ac bc,否命题为真,逆否命题:当c 0 时,假设ac bc,那么a b,逆否命题为真,原结论,反设词,原结论,反设词,是,至少有一个,都是,至多有一个,大于,至少有n个,小于,至多有n个,对所有x,成立,对任何x,,不成立,准确地作出反设(即否认结论)是非常重要的,下面是一些常见的结论的否认形式.,不是,不都是,不大于,大于或等于,一个也没有,至少有两个,至多有n-1)个,至少有n+1)个,存在某x,,不成立,存在某x,,成立,练习:分别写出以下命题的逆命题、否命题、逆否命题,并判断它们的真假。,1假设q1,那么方程 有实根。,2假设ab=0,那么a=0或b=0.,
展开阅读全文