资本定价模型ppt课件

上传人:20****08 文档编号:252758869 上传时间:2024-11-19 格式:PPT 页数:73 大小:593.03KB
返回 下载 相关 举报
资本定价模型ppt课件_第1页
第1页 / 共73页
资本定价模型ppt课件_第2页
第2页 / 共73页
资本定价模型ppt课件_第3页
第3页 / 共73页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,9-,73,McGraw-Hill/Irwin, 2007,The McGraw-Hill Companies, Inc., All Rights Reserved.,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,第,9,章,资本资产定价模型,The Capital Asset Pricing Model,第9章资本资产定价模型 The Capital As,9.1,股票的需求与均衡价格,9.2,资本资产定价模型,9.3,资本资产定价模型的扩展形式,9.4,资本资产定价模型与流动性,资本资产定价模型,Capital Asset Pricing Model (CAPM),9.1 股票的需求与均衡价格资本资产定价模型,The supply and demand for shares determine equilibrium prices and expected rates of return. Imagine a simple world with only two corporations: Bottom Up Inc. (BU) and Top Down Inc. (TD). Stock prices and market values are shown in Table 9.1. Investors can also invest in a money market fund (MMF) which yields a risk-free interest rate of 5%.,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,The supply and demand for s,Sigma Fund is a new actively managed mutual fund that has raised $220 million to invest in the stock market. The security analysis staff of Sigma believes that neither BU nor TD will grow in the future and therefore, that each firm will pay level annual dividends for the foreseeable future. This is a useful simplifying assumption because, if a stock is expected to pay a stream of level dividends, the income derived from each share is a perpetuity. Therefore, the present value of each share often called the,intrinsic value,of the share equals the dividend divided by the appropriate discount rate. A summary of the report of the security analysts appears in Table 9.2.,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,Sigma Fund is a new active,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,股票的需求与均衡价格DEMAND FOR STOCKS A,Using these data and assumptions Sigma easily generates the efficient frontier shown in Figure 9.1 and computes the optimal portfolio proportions corresponding to the tangency portfolio. These proportions, combined with the total investment budget, yield the funds buy orders. With a budget of $220 million, Sigma wants a position in BU of $220,000,000 X 0.8070 =$177,540,000, or $177,540,000/39 =4,552,308 shares, and a position in TD of $220,000,000 X 0.1930= $42,460,000, which corresponds to 1,088,718 shares.,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,Using these data and assump,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,股票的需求与均衡价格DEMAND FOR STOCKS A,The expected rates of return that Sigma used to derive its demand for shares of BU and TD were computed from the forecast of year-end stock prices and the current prices. If, say, a share of BU could be purchased at a lower price, Sigmas forecast of the rate of return on BU would be higher. Conversely, if BU shares were selling at a higher price, expected returns would be lower. A new expected return would result in a different optimal portfolio and a different demand for shares.,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,The expected rates of retur,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,股票的需求与均衡价格DEMAND FOR STOCKS A,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,Sigmas demand curve for BU stock is given by the Desired Shares column in Table 9.3 and is plotted in Figure 9.2. Notice that the demand curve for the stock slopes downward. When BUs stock price falls, Sigma will desire more shares for two reasons: (1) an income effect - at a lower price Sigma can purchase more shares with the same budget, and (2) a substitution effect - the increased expected return at the lower price will make BU shares more attractive relative to TD shares. Notice that one can desire a negative number of shares, that is, a short position. If the stock price is high enough, its expected return will be so low that the desire to sell will overwhelm diversification motives and investors will want to take a short position. Figure 9.2 shows that when the price exceeds $44, Sigma wants a short position in BU.,股票的需求与均衡价格DEMAND FOR STOCKS A,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,股票的需求与均衡价格DEMAND FOR STOCKS A,股票的需求与均衡价格,DEMAND FOR STOCKS AND EQUILIBRIUM PRICES,The demand curve for BU shares assumes that the price and therefore expected return of TD remain constant. A similar demand curve can be constructed for TD shares given a price for BU shares. As before, we would generate the demand for TD shares by revising Table 9.2 for various current prices of TD, leaving the price of BU unchanged. We use the revised expected returns to calculate the optimal portfolio for each possible price of TD, ultimately obtaining the demand curve shown in Figure 9.3.,股票的需求与均衡价格DEMAND FOR STOCKS A,资本资产定价模型是现代金融学的奠基石,(,风险与期望收益均衡模型,),It is the equilibrium model that underlies all modern financial theory.,由诸多简单假定原理来建立,Derived using principles of diversification with simplified assumptions.,马克维茨,威廉,夏普,林特纳和简,莫辛研究和发展了资本资产定价模型。,Markowitz, Sharpe, Lintner and Mossin are researchers credited with its development.,资本资产定价模型,Capital Asset Pricing Model (CAPM),资本资产定价模型是现代金融学的奠基石(风险与期望收益均衡模型,个体投资者是价格的接受者,Individual investors are price takers,单周期投资期限,Single-period investment horizon,投资限制在金融资产的交易,Investments are limited to traded financial assets,无税负和交易成本,No taxes, and transaction costs,假设,Assumptions,个体投资者是价格的接受者,投资者是理性的均值-方差完善者,Investors are rational mean-variance optimizers,同质期望,Homogeneous expectations,给定一系列证券的价格和无风险利率,所有投资者的证券收益的期望收益率与协方差矩阵相等,从而产生了有效率边界和一个独一无二的最优风险资产组合。这一假定也被称为 同质期望。,Given a set of security prices and the risk-free interest rate, all investors use the same expected returns and covariance matrix of security returns to generate the efficient frontier and the unique optimal risky portfolio. This assumption is often referred to as,homogeneous expectations,.,对投资者来说信息是无成本的和有效的,Information is costless and available to all investors,假设,Assumptions (cont,d),投资者是理性的均值-方差完善者 假设 Assumption,全部投资者将持有相同的风险资产-市场组合,All investors will hold the same portfolio for risky assets,market portfolio.,市场组合含有全部股票和每只股票在市场资产组合所占的比例等于它的市值占所有股票的市值,Market portfolio contains all securities and the proportion of each security is its market value as a percentage of total market value.,均衡条件,Resulting Equilibrium Conditions,全部投资者将持有相同的风险资产-市场组合,市场的风险溢价取决于全部市场参与者的平均风险厌恶,Risk premium on the market depends on the average risk aversion of all market participants,均衡条件,Resulting Equilibrium Conditions (cont.),式中,2,M,为市场资产组合的方差;,A,为投资者风险厌恶的平均水平。请注意由于市场资产组合是最优资产组合,即风险有效地分散于资产组合中的所有股票,,2,M,也,就是这个市场的系统风险。,市场的风险溢价取决于全部市场参与者的平均风险厌恶,个体证券的风险溢价是市场协方差的函数,Risk premium on an individual security is a function of its covariance with the market,贝塔是用来测度股票与一起变动情况下证券收益的变动程度的。贝塔的正式定义如下:,Beta measures the extent to which returns on the stock and the market move together. Formally, beta is defined as,均衡条件,Resulting Equilibrium Conditions (cont.),个体证券的风险溢价是市场协方差的函数Risk premium,个体证券的风险溢价是市场协方差的函数,Risk premium on an individual security is a function of its covariance with the market,单个证券的风险溢价等于:,The risk premium on individual securities is,均衡条件,Resulting Equilibrium Conditions (cont.),个体证券的风险溢价是市场协方差的函数Risk premium,当我们把所有个人投资者的资产组合加总起来时,借与贷将互相抵消(这是因为每个借入者都有一个相应的贷出者与之对应),加总的风险资产组合价值等于整个经济中全部财富的价值,这就是市场资产组合。每只股票在这个资产组合中的比例等于股票的市值占所有股票市场价值的比例。,资本资产定价模型认为每个投资者均有优化其资产组合的倾向,最终所有个人的资产组合会趋于一致,每种资产的权重等于它们在市场资产组合中所占的比例。,The portfolios of all individual investors, lending and borrowing will cancel out (since each lender has a corresponding borrower), and the value of the aggregate risky portfolio will equal the entire wealth of the economy. This is the market portfolio,M,. The proportion of each stock in this portfolio equals the market value of the stock (price per share times number of shares out- standing) divided by the sum of the market values of all stocks.5 The CAPM implies that as individuals attempt to optimize their personal portfolios, they each arrive at the same port- folio, with weights on each asset equal to those of the market portfolio.,市场资产组合,The Market Portfolio,当我们把所有个人投资者的资产组合加总起来时,借与贷将,依据前文给定的假定条件,不难看出所有的投资者均倾向于持有同样的风险资产 组合。如果所有的投资者都将马克维茨分析,(,假定,5),应用于同样广泛的证券,(,假定,3),,在一个相同的时期内计划他们的投资,(,假定,2),,并且投资顺序内容也相同的话,(,假定,6),那么他们必然会达到相同的最优风险资产组合。正如下图所示,.,Given the assumptions of the previous section, it is easy to see that all investors will desire to hold identical risky portfolios. If all investors use identical Markowitz analysis (Assumption 5) applied to the same universe of securities (Assumption 3) for the same time horizon (Assumption 2) and use the same input list (Assumption 6), they all must arrive at the same determination of the optimal risky portfolio, the portfolio on the efficient frontier identified by the tangency line from T-bills to that frontier, as in following figure.,市场资产组合,The Market Portfolio,依据前文给定的假定条件,不难看出所有的投资者均倾向于,资本市场线,Capital Market Line,E(r),E(r,M,),r,f,M,资本市场线,CML,m,资本市场线Capital Market LineE(r)E,M=,市场组合,Market portfolior,f,=,无风险率,Risk free rateE(r,M,) - r,f,=,市场风险溢价,Market risk premium,E(r,M,) - r,f,=,风险市场价格,Market price of risk,= CAPM,斜率,Slope of the CAPM,M,市场风险溢价和斜率,Slope and Market Risk Premium,M=市场组合Market portfoliorf,市场资产组合的均衡风险溢价,,E,(,r,M,)-,r,f,,与投资者群体的平均风险厌恶程度和市场资产组合的风险,2,M,是成比例的。,The equilibrium risk premium on the market portfolio, E(r,M,)-r,f,will be proportional to the average degree of risk aversion of the investor population and the risk of the market portfolio. Now we can explain this result.,市场资产组合的风险溢价,The Risk Premium of the Market Portfolio,市场资产组合的均衡风险溢价, E(rM)-rf,与投资,在简化了的,CAPM,模型经济中,无风险投资包括投资者之间的借入与贷出。任何借 入头寸必须同时有债权人的贷出头寸作为抵偿。这意味着投资者之间的净借入与净贷 出的总和为零。那么在风险资产组合上的投资比例总的来说是,100%,,或,y,= 1,。设,y,1,, 代入,9-1,式经整理,我们发现市场资产组合的风险溢价与风险厌恶的平均水平有关:,In the simplified CAPM economy, risk-free investments involve borrowing and lending among investors. Any borrowing position must be offset by the lending position of the creditor. This means that net borrowing and lending across all investors must be zero, and in consequence the average position in the risky portfolio is 100%, or,y=,1. Setting,y=,1 in equation 9.1 and rearranging, we find that the risk premium on the market portfolio is related to its variance by the average degree of risk aversion:,市场资产组合的风险溢价,The Risk Premium of the Market Portfolio,在简化了的CAPM模型经济中,无风险投资包括投资者,单个证券的风险益价是单个证券对市场组合风险的贡献函数,The risk premium on individual securities is a function of the individual security,s contribution to the risk of the market portfolio.,单个证券的风险益价是构成市场组合资产收益协方差的函数,An individual security,s risk premium is a function of the covariance of returns with the assets that make up the market portfolio.,单个证券的收益和风险,Expected Return and Risk on Individual Securities,单个证券的风险益价是单个证券对市场组合风险的贡献函数,假定现在我们要测算通用公司股票的资产组合风险,我们用通用公司股票(,GM,股) 同市场资产组合的协方差来刻画其对资产组合的风险贡献程度。为解释这种测算方法, 先要再次阐明市场资产组合的方差是如何计算的。为此,我们按第,8,章讨论过的方法将,n,阶协方差矩阵各项按照从行到列的顺序分别乘以各证券在市场资产组合中的权重。,Suppose, for example, that we want to gauge the portfolio risk of GM stock. We mea- sure the contribution to the risk of the overall portfolio from holding GM stock by its covariance with the market portfolio. To see why this is so, let us look again at the way the variance of the market portfolio is calculated. To calculate the variance of the market port- folio, we use the bordered covariance matrix with the market portfolio weights, as discussed in Chapter 8. We highlight GM in this depiction of the,n,stocks in the market portfolio.,单个证券的收益和风险,Expected Return and Risk on Individual Securities,假定现在我们要测算通用公司股票的资产组合风险,我们用,单个证券的收益和风险,Expected Return and Risk on Individual Securities,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,通用公司股票对市场资产组合方差的贡献为:,The contribution of GMs stock to the variance of the market portfolio is:,单个证券的收益和风险Expected Return and,通用公司股票对市场资产组合方差的贡献度,市场资产组合的收益率可以表示如下,:,The rate of return on the market portfolio may be written as,单个证券的收益和风险,Expected Return and Risk on Individual Securities,通用公司股票对市场资产组合方差的贡献度单个证券的收益和风险,通用公司股票与市场资产组合的协方差为,:,The covariance of the return on GM with the market portfolio is:,单个证券的收益和风险,Expected Return and Risk on Individual Securities,通用公司股票与市场资产组合的协方差为:单个证券的收益和风险,测度了通用公司股票对市场方差的贡献度后,我们就可以来确定通用公司股票的合理风险溢价了。首先,我们注意到市场资产组合的风险溢价为,E(r,M,-r,f,),,方差为,2,M,,酬报与波动性比率为,:,Having measured the contribution of GM stock to market variance, we may determine the appropriate risk premium for GM. We note first that the market portfolio has a risk premium of E(r,M,-r,f,),and a variance of,2,M, for a reward-to-risk ratio of,单个证券的收益和风险,Expected Return and Risk on Individual Securities,测度了通用公司股票对市场方差的贡献度后,我们就可以来确,假定某位平均的投资者投资于市场资产组合的比例为,100%,,现在他打算通过借入无风险贷款的方式来增加比例为小量的市场资产组合头寸。新的资产组合由以下三 部分组成:收益为,r,M,的原有市场资产组合头寸,收益为,-,r,f,的无风险资产空头头寸,以及收益为,r,M,的市场资产组合的多头头寸。总的资产组合收益为,r,M,(,r,M,-,r,f,),,将其期望值与最初期望值,E,(,r,M,),比较,期望收益的增加额为,单个证券的收益和风险,Expected Return and Risk on Individual Securities,假定某位平均的投资者投资于市场资产组合的比例为 100,单个证券的收益和风险,Expected Return and Risk on Individual Securities,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,为了度量新资产组合的风险,我们重新计算资产组合的方差。新资产组合由权重为,(1,),的市场资产组合与权重为,-,的无风险资产组成,调整后的资产组合的方差为,:,To measure the impact of the portfolio shift on risk, we compute the new value of the portfolio variance. The new portfolio has a weight of (1+,) in the market and -,in the risk-free asset. Therefore, the variance of the adjusted portfolio is:,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,由于,非常小,所以相比于,2,而言,2,可以忽略,因而我们这里对这一项忽略不计,However, if,is very small, then,2,will be negligible compared to 2, so we may ignore,this term,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,综合以上结果,增加的风险溢价与增加的风险之间的平衡,即风险的边际价格为,:,Summarizing these results, the trade-off between the incremental risk premium and,incremental risk, referred to as the marginal price of risk, is given by the ratio,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,现在,作为一个替代,假定投资者用以无风险利率借入的资金 投资于通用公司股票。他的平均超额收益的增加值为,:,Now suppose that, instead, investors were to invest the incrementin GM stock, also financed by borrowing at the risk-free rate. The increase in mean excess return is:,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,这一资产组合中投资于市场资产组合的资金权重为,1.0,,投资于通用公司股票的资金权重为,,投资于无风险资产的资金权重为,-,。这一资产组合的方差为,:,This portfolio has a weight of 1.0 in the market,in GM, and -,in the risk-free asset. Its GM variance is:,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,因此,方差增加值包括两部分:通用公司股票新增头寸的方差和两倍通用公司股票与市场资产组合的协方差:,The increase in variance therefore includes the variance of the incremental position in GM,plus,twice its covariance with the market:,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,2,忽略不计,通用公司股票的风险边际价格为,Dropping the negligible term involving,2, the marginal price of risk,of GM is,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,建立通用公司股票的风险边际价格同市场资产组合的风 险边际价格相等的等式如下:,Equating the marginal price of risk of GMs stock to that of the market results in a relationship between the risk premium of GM and that of the market:,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,经调整我们得到通用公司股票的正常风险溢价:,To determine the fair risk premium of GM stock, we rearrange slightly to obtain,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,这里,,Cov(,r,GM,,,r,M,)/,2,M,测度的是通用公司股票对市场资产组合方差的贡献程度,这是市场资产组合方差的一个组成部分。这一比率称作贝塔(,beta,),以,表示,这样,,9-6,式可以写作为:,The ratio Cov(,r,GM,,,r,M,)/,2,M,measures the contribution of GM stock to the variance of the market portfolio as a fraction of the total variance of the market portfolio. The ratio is called,beta,and is denoted by,. Using this measure, we can restate equation 9.6 as,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,上式即是,CAPM,模型的最普通形式 期望收益,-,贝塔关系,我们对这一关系式还要做更详尽的论述。,This,expected return,beta relationship,is the most familiar expression of the CAPM to practitioners. We will have a lot more to say about the expected returnbeta relationship shortly.,单个证券的收益和风险Expected Return and,单个证券的收益和风险,Expected Return and Risk on Individual Securities,If the expected returnbeta relationship holds for any individual asset, it must hold for any combination of assets. Suppose that some portfolio,P,has weight,wk,for stock,k,where,k,takes on values 1, . . . ,n,. Writing out the CAPM equation 9.7 for each stock, and multiplying each equation by the weight of the stock in the portfolio, we obtain these equations, one for each stock:,单个证券的收益和风险Expected Return and,证券市场线,Security Market Line,E(r),E(r,M,),r,f,证券市场线,SML,b,b,M,= 1.0,证券市场线Security Market LineE(r),= COV(r,i,r,m,) /,m,2,证券市场线斜率,Slope SML =E(r,m,) - r,f,=,市场风险溢价,market risk premium,SML = r,f,+,E(r,m,) - r,f,Beta,m,= Cov (r,i,r,m,) /,s,m,2,=,s,m,2,/,s,m,2,= 1,:,证券的协方差风险,证券市场线关系,SML Relationships,= COV(ri,系数。美国经济学家威廉,夏普提出的风险衡量指标。用它反映资产组合波动性与市场波动性关系(在一般情况下,将某个具有一定权威性的股指(市场组合)作为测量股票,值的基准)。,如果,值为,1.1,,即表明该股票波动性要比市场大盘高,10,,说明该股票的风险大于市场整体的风险,当然它的收益也应该大于市场收益,因此是进攻型证券。反之则是防守型股票。无风险证券的,值等于零,市场组合相对于自身的,值为,1,。,系数。美国经济学家威廉夏普提出的风险衡量指标。用它反映资,E(r,i,) = r,f,+,i,(E(r,m,) - r,f,),资本资产定价模型的最普通形式,期望收益贝塔关系,E(r,m,) - r,f,= .08 r,f,= .03,x,= 1.25,E(r,x,) = .03 + 1.25(.08) = .13 or 13%,y,= .6,E(r,y,) = .03 + .6(.08) = .078 or 7.8%,证券市场线计算实例,Sample Calculations for SML,证券市场线计算实例Sample Calculations,计算图形,Graph of Sample Calculations,E(r),R,x,=13%,SML,b,1.0,R,m,=11%,R,y,=7.8%,3%,1.25,b,x,.6,b,y,.08,By,计算图形Graph of Sample Calculati,布莱克的零贝塔模型,Black,s Zero Beta Model,缺少无风险资产,Absence of a risk-free asset,在有效边界上的任何资产组合是有效资产组合。,Combinations of portfolios on the efficient frontier are efficient.,有效率边界上的任一资产组合有不相关组合相伴,All frontier portfolios have companion portfolios that are uncorrelated.,任何单个资产的收益可以准确地由任意两个边界资产组合的期望收益的线性函数表示。,任何单个资产的收益可以由有效组合的线性函数表示。,Returns on individual assets can be expressed as linear combinations of efficient portfolios.,布莱克的零贝塔模型Blacks Zero Beta M,布莱克的零贝塔模型,Black,s Zero Beta Model,布莱克的禁止卖空无风险资产的,CAPM,模型建立在下列三项有效率资产组合的方 差均值性质之上:,1),任何有效率资产组合组成的资产组合仍然是有效率资产组合。,2),有效率边界上的任一资产组合在最小方差边界的下半部分(无效率部分)上均 有相应的“伴随”资产组合存在,由于这些“伴随”资产组合是不相关的,因此,这 些资产组合可以被视为有效率资产组合中的零贝塔资产组合。,Blacks model of the CAPM in the absence of a risk-free asset rests on the three following properties of mean-variance efficient portfolios:,1. Any portfolio constructed by combining efficient portfolios is itself on the efficient frontier.,2. Every portfolio on the efficient frontier has a “companion” portfolio on the bottom half (the inefficient part) of the minimum-variance frontier with which it is uncorrelated. Because the portfolios are uncorrelated, the companion portfolio is referred to as the,zero-beta portfolio,of the efficient portfolio.,布莱克的零贝塔模型Blacks Zero Beta M,有效组合和零贝塔伴随,Efficient Portfolios and Zero Companions,Q,P,Z(Q),Z(P),Er,z (Q),Er,z (P),E(r),s,有效组合和零贝塔伴随Efficient Portfolio,布莱克的零贝塔模型方程,Black,s Zero Beta Model Formulation,任何资产的期望收益可以准确地由任意两个边界资产组合的期望收益的线性函 数表示。例如,考虑有两个最小方差边界资产组合,P,与,Q,,布莱克给出任意资产,i,的期 望收益的表达如下:,The expected return of any asset can be expressed as an exact, linear function of the expected return on any two frontier portfolios. Consider, for example, the minimum-variance frontier portfolios,P,and,Q,. Black showed that the expected return on any asset,i,can be expressed as,布莱克的零贝塔模型方程Blacks Zero Beta,布莱克的零贝塔模型方程,Black,s Zero Beta Model Formulation,假定经济中只有两个投资者,一个相对来说厌恶风险,而另外一个可以忍受风险。 厌恶风险的投资者选择资本配置线上的资产组合,T,,如图,9-5,所示,也就是说,他的资 产组合由资产组合,T,与按无风险利率贷出的无风险资产组成。,T,是由无风险借贷利率,rf,出发的有效率边界的切点。忍受风险的投资者愿意在承担更多风险的前提下取得更高 的风险溢价:他选择图中的,S,。,S,资产组合与,T,资产组合相比较,虽同处于有效率边界 但其风险与收益均高于,T,资产组合。总的风险资产组合(也就是市场资产组合,,M,)由,T,与,S,结合而成,各自权重由两个投资者的相对财富与风
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!