资源描述
1,指数函数及其性质,1指数函数及其性质,2,某种细胞分裂时,第一次由,1,个分裂成,2,个,第,2,次由,2,个分裂成,4,个,如此下去,如果第,x,次分裂得到,y,个细胞,那么细胞个数,y,与分裂次数,x,的函数关系是什么?,引例:,1,2某种细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成,3,一个细胞,分裂,次数,第一次,第二次,第三次,第四次,第,x,次,.,细胞,总数,y,.,表达式,x,3一个细胞分裂第一次第二次第三次第四次第x次.细胞y,2,一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的,84%.,求出这种物质的剩留量随时间,(,单位,:,年,),变化的函数关系,.,设最初的质量为,1,时间变量用,x,表示,剩留量用,y,表示,则,经过,1,年,经过,2,年,归纳出,:,经过,x,年,思考,:,这两个例子的式子有什么共同特征,?,底数是常数,指数是变量,2 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约,5,1.,指数函数的定义,常数,自变量,系数为,1,y,1,a,x,51.指数函数的定义常数自变量系数为1y1 ax,定义,:,一般地,函数,叫做,指数函数,注意,:,(1),规定,恒等于零,无意义,无意义,是一个常值函数,无研究必要,(,2,)形式的严格性:,指数是自变量,x,,且,整个式子的系数是,1,定义:一般地,函数 叫做指数函数注意:(1)规定恒等于零无,7,1,:指出下列函数那些是指数函数:,答案,:,(,1,)(,6,)(,8,),是指数函数,2,3,:已知,y=f(x),是指数函数,且,f(2)=4,求函数,y=f(x),的解析式。,71:指出下列函数那些是指数函数:答案:(1)(6)(8)是,8,画出下列指数函数的图象,3,2,1,0,-1,-2,-3,x,1,3,9,27,27,9,3,1,1,2,4,8,8,4,2,1,x,8画出下列指数函数的图象3210-1-2-3x1392,0,1,1,011,0,1,1,0,1,1,0,1,0,1,0110110101,0,1,0,1,0101,12,图 象,性 质,y,x,0,y=1,(0,1),y=a,x,(a1),y,x,(0,1),y=1,0,y=a,x,(0a1,0a 0,时,,y 1.,当,x 0,时,,.0 y 1,当,x 1,;,当,x 0,时,,0 y 1,。,12 图 象 性 质yx0y=1,13,例,1,:,比较下列各题中两值的大小,(,1,),1.7,2.5,与,1.7,3,;,(,2,),0.8,-01,与,0.8,-02,(,3,),与 (,4,)与,(,5,),(0.3),-0.3,与,(0.2),-0.3,(,6,),1.7,0.3,与,0.9,3.1,同底比较大小,不同底但可化同底,不同底但同指数,底不同,指数也不同,同底指数幂比大小,构造指数函数,利用函数单调性,不同底数幂比大小,利用指数函数图像与底的关系比较,利用中间量进行比较,13例1:比较下列各题中两值的大小 同底比较大小不同底,14,例,2,:,已知下列不等式,比较,m,n,的大小,:,(,1,),(,2,),(,3,),14 例2:已知下列不等式,比较 m,n 的大小,15,课堂练习,1.,求下列函数的定义域,:,(1),(2),(3),函数,恒过点,15课堂练习1.求下列函数的定义域:恒过点,16,小结归纳:,通过本节课的学习,你学到了哪些知识?,你又掌握了哪些数学思想方法?,你能将指数函数的学习与实际生活联系起来吗?,16小结归纳:通过本节课的学习,你学到了哪些知识?,17,习题,2-1A,组第,5,、,6,、,7,、,8,题,布置作业:,A,先生从今天开始每天给你,10,万元,而你承担如下任务,:,第一天给,A,先生,1,元,第二天给,A,先生,2,元,第三天给,A,先生,4,元,第四天给,A,先生,8,元,依次下去,那么,A,先生要和你签定,15,天的合同,你同意吗,?,又,A,先生要和你签定,30,天的合同,你能签这个合同吗,?,思考题,17习题2-1A组第5、6、7、8题布置作业:A先生从今天开,X,O,Y,X=1,b,a,d,c,思考,设,a,b,c,d,都是不等于,1,的正数,函数,:,在同一直角坐标系中的图象如图所示,.,则,a,b,c,d,的大小关系是,XOYX=1badc思考设a,b,c,d都是不等于1的正数,
展开阅读全文