精品:抽屉原理(新)

上传人:痛*** 文档编号:252750869 上传时间:2024-11-19 格式:PPT 页数:28 大小:1.17MB
返回 下载 相关 举报
精品:抽屉原理(新)_第1页
第1页 / 共28页
精品:抽屉原理(新)_第2页
第2页 / 共28页
精品:抽屉原理(新)_第3页
第3页 / 共28页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,人 教 版 小 学 数 学六 年 级 下 册,抽 屉 原 理,感知模型,建立模型,验证模型,应用模型,让学生,经历“数学化”的过程,,学会思考数学问题的方法,培养学生的数学思维能力。,1,、初步,了解,抽屉原理,,会用,抽屉原理,解决,简单,的,实际问题,。,2,、,经历,抽屉原理的探究,过程,,,通过,实践操作,,发现、归纳、总结原理,。,3,、通过“抽屉原理”的灵活应用,提高学生解决,问题的能力,感受数学的魅力。,教学目标,教学重点:,经历抽屉原理的探究过程,发现、总结并理解抽屉原理。,教学难点:,理解抽屉原理中“,至少,”的含义,并会用抽屉原理解决实际问题。,重点难点,【,教法,】,设疑激趣法、讲授法、实践操作法。,【,学法,】,自主、合作、探究式的学习方式。,教法学法,游戏导入 激发兴趣,一,自主操作 探究新知,二,归纳小结 建立模型,三,回归生活,灵活应用,四,教学过程,教学过程,肯定有一张凳子上至少坐着,2,位同学,老师说得对吗?,游戏导入 激发兴趣,一,把,4,枝铅笔放入到,3,个笔筒中,可以怎样放?共有几种不同的放法?,1,、初步探究,自主操作 探究新知,二,例,1,:,1,、,小组准备好,4,支笔和,3,个笔筒,动手摆一摆、,放一放,并用自己喜欢的方法记录下来。,2,、把,4,支笔都放入,3,个笔筒中,可以,怎样放,?看,看,共有几种不同的放法,?,3,、猜一猜:不管怎么放,,总有,一个笔筒,至少,放,进几支笔?,第一步:小组合作,把,4,枝铅笔放在,3,个,笔筒,里,可以怎么放,有几种方法?,0,0,(,4,,,0,,,0,),第二步:全班交流,把,4,枝铅笔放在,3,个,笔筒,里,可以怎么放,有几种方法?,0,(,3,,,1,,,0,),把,4,枝铅笔放在,3,个,笔筒,里,可以怎么放,有几种方法?,0,(,2,,,2,,,0,),把,4,枝铅笔放在,3,个,笔筒,里,可以怎么放,有几种方法?,(,2,,,1,,,1,),共四种情况:(,列举法,),(,4,,,0,,,0,)(,3,,,1,,,0,)(,2,,,2,,,0,)(,2,,,1,,,1,),不管怎么放,总有一个,笔筒里,至少,放进,2,枝铅笔。,“总有一个”,和,“至少”,是什么意思?,第三步:重点字词理解,平均分,(假设法),思考:,把,4,枝铅笔放入到,3,个笔筒中。如,何摆一次就能得到结论?,第四步:理解“平均分”的思路,把,5,枝笔放进,4,个笔筒里,不管怎么放,总有一个笔筒里,至少,放进()枝笔,这是为什么?,2,第五步:迁移类推,把,6,枝笔放进,5,个笔筒里,不管怎么放,总有一个笔筒里,至少,放进()枝笔,这是为什么?,2,发现:至少数,=,把,5,枝铅笔放进,3,个笔筒里,总有一个笔筒里 至少放进()枝铅笔。,把,7,枝铅笔放进,4,个笔筒里呢,?,把,9,枝铅笔放进,5,个笔筒里呢?,至少数,:,商,+1=2,第一步:研究铅笔数比笔筒数不是多,1,的情况。,2,、深入探究:,把,5,本书放进,2,个抽屉中。,不管怎么放,总有一个抽屉里至少放进,3,本书。,如果一共有,7,本书会怎样呢?,9,本呢?,例,2,:,第二步:研究当商不是,1,时,至少数的结果。,至少数,=,商,+1,第一步:观察比较,发现规律,归纳小结 建立模型,三,抽屉原理,抽屉原理,是,19,世纪的德国数学家狄里克雷在观察鸽子飞回鸽笼时候发现的,人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫,“,狄里克雷原理,”,,也叫,“,鸽巢原理,”,。,狄里克雷发现这个规律后,并没,有停止对现象的研究,又发现了问题。,第二步:了解抽屉原理,第三步:建立模型,物体数,抽屉数商,余数,至少数,=,商,+1,第二步:生活中抽屉原理的事例,第一步:解释抢凳子游戏的奥秘,1,、任意三个人中,至少有两人是同一性别的。,2,、随意找,13,个人,至少有两人属相相同。,3,、从,15,人,至少有两人在同一个月过生日。,4,、我们班,48,人中至少有多少人在同一个月过生日?,回归生活,灵活应用,四,第三步:应用抽屉原理,解决生活中实际问题,。,1,、,2,、把,16,只小兔子关在,5,个笼子里,至少有几只兔子要关在同一个笼子里?,应用模型,3,、新兵训练,战士小王,6,枪命中了,43,环,战士小王总有一枪至少打中几环?,应用模型,4,、,367,个同学中,一定存在至少有几个人在同一天过生日?,应用模型,5,、一副扑克牌有四种花色,从,52,张扑克牌中抽出,5,张,同种花色牌的至少有几张?为什么?,小游戏,摸扑克牌,应用模型,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!