HumanPosedetection人体姿态检测

上传人:ra****d 文档编号:252657673 上传时间:2024-11-19 格式:PPT 页数:12 大小:158.50KB
返回 下载 相关 举报
HumanPosedetection人体姿态检测_第1页
第1页 / 共12页
HumanPosedetection人体姿态检测_第2页
第2页 / 共12页
HumanPosedetection人体姿态检测_第3页
第3页 / 共12页
点击查看更多>>
资源描述
*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,Human Pose detection,Abhinav Golas,S. Arun Nair,Overview,Problem,Previous solutions,Solution, details,Problem,Segmentation of humans from video capture,Pose detection (by fitting onto body model),Resistant to noise (background etc.),Previous procedures,View problem as sequential process,Segmentation,Pose detection,Problems:,Not using prior knowledge of “what a human looks like in segmentation,Uses only information from detected “foreground for pose detection,All available information not used,Solution,Combine segmentation and pose detection as a single step,Uses all available information in frame (for pose detection),Uses prior knowledge of human body for better segmentation,PoseCut: Bray, Kohli, Torr,Model segmentation as Bayesian labeling problem with 2 labels: foreground, background,Details,Model problem as energy minimization problem model as an MRF,Use a basic stickman model as a human body model,Adaptive model for background GMM,Neighbourhood terms Generalised Potts model,MRF Markov Random Fields,Markov property for time:P(event:t) depends on events at times kt,Markov property for space:P(event:x) depends on events at N(x) neighbourhood of x,Use Gibbs energy model for solving,We use neighbourhood of 8 pixels,Stickman model,Basic model,26 degrees of freedom,GMM Gaussian Mixture Model,Model each pixel of image as a weighted sum of Gaussian functions,Adapt functions using each new frame,Pixel matches expected value background, else foreground,Execution details,For each frame,Calculate weights for GMM, Potts model,For given value of 26 vector (based on degrees of freedom of stickman model) calculate energy cost for stickman model (by distance transform),Minimize energy for Bayesian labeling by graph cut,Minimize 26 vector by repeated graph cuts by Powells algorithm,Sample results,A original frame,B segmentation by colour likelihood and contrast terms,C when GMM terms are taken,D with pose prior components,E deduced pose,Comparisons,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!