资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,19.2,平行四边形,第,19,章 四边形,第,1,课时 平行四边形边和角的性质,19.2 平行四边形第19章 四边形第1课时 平行四边形边和,学习目标,1.,理解平行四边形的定义及有关概念.,2.,能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(,重难点,),学习目标1.理解平行四边形的定义及有关概念.,导入新课,情景引入,导入新课情景引入,生活中,平行四边形无处不在,那么它有哪些性质呢?今天我们就一起来探讨一下吧!,生活中,平行四边形无处不在,那么它有哪些性质呢?今天我们就一,活动,1,:,如果将一个三角形的两边分别,平移,会得到什么图形?,思考:,请观察颜色相同的两组对边,它们有怎样的,位置关系,呢?,讲授新课,平行四边形边的相关概念,一,合作探究,活动1:如果将一个三角形的两边分别平移,会得到什么图形?思,两组对边都不平行,一组对边平行,,一组对边不平行,两组对边分别平行,平行四边形,活动,2,:,观察图形,说出下列图形,边的位置,有什么特征?,两组对边都不平行一组对边平行,两组对边分别平行平行四边形活动,1.,两组,对边,分别,平行,的四边形叫做,平行四边形,2.,记作:,ABCD,.,读作:,平行四边形,ABCD,.,几何语言:,ABCD,,,ADBC,,,四边形,ABCD,是平行四边形.,3.,平行四边形不相邻的两个顶点连成的线段叫它的,对角线,.,如图,AC,.,4.,平行四边形中,相对的边称为,对边,,,相对的角称为,对角,.,概念学习,1.两组对边分别平行的四边形叫做平行四边形2.记作:A,你能从以下图形中找出平行四边形吗?,2,3,1,4,5,说一说,你能从以下图形中找出平行四边形吗?23145说一说,活动,3,:,将两个全等的三角形纸片,相等的边重合在一起,你能拼出平行四边形吗?你能拼出几个?与同学交流你的拼法,并把它展示出来.,说一说:,通过拼图你可以得到什么启示?,平行四边形对边相等,对角相等,.,一,平行四边形边和角的性质,二,这个结论正确吗?,活动3:将两个全等的三角形纸片相等的边重合在一起,你能拼出平,方法,1,:度量法,A,B,C,D,这个方法准确吗?,方法1:度量法ABCD这个方法准确吗?,平行四边形的一条对角线把平行四边形分成两个全等的三角形;,A,B,C,D,四边形问题,转化,三角形问题,方法,2,:推理证明,平行四边形的一条对角线把平行四边形分成两个全等的三角,证明:如图,连接,AC,,,ADBC,,,AB,CD,,,1=2,,,3=4.,又,AC,是,ABC,和,CDA,的公共边,,ABC,CDA.,AB,=,CD,,,AD,=,CD,,,B,=,D.,已知,:,ABCD,ABCD,,,ADBC,.,求证,:,AB=CD,,,BC=DA,;,B,=,D,BAD,=,DCB,又,1=2,,,3=4,1+,4=,2+,3.,即,BAD,=,DCB,.,证明结论,证明:如图,连接AC,已知:ABCD,ABCD,AD,思考:,不添加辅助线,你能否直接 运用平行四边形,的定义,证明其对角相等?,A,B,C,D,证明:,ABDC,ABC,+,BCD,=180,ADBC,BAD,+,ABC,=180,BCD,=,BAD,同理,ABC,=,ADC,.,思考:不添加辅助线,你能否直接 运用平行四边形ABCD证明:,几 何 语 言,边,角,文字叙述,对边平行,对边相等,对角相等,四边形,ABCD,是平行四边形,,AD,BC,,,AB,DC,.,AD=BC,,,AB=DC,.,四边形,ABCD,是平行四边形,,A=,C,,,B=,D,.,四边形,ABCD,是平行四边形,,A,B,C,D,平行四边形的性质,知识要点,性质定理,1,性质定理,2,几 何 语 言边角文字叙述对边平行对边相等对角相等 四边形,例,1.,已知,:,ABCD,E,,,F,是对角线,AC,上的两点,并且,A,E=,C,F,,,求证,:,B,E,=D,F,.,证明:四边形,ABCD,是平行四边形,,BAE,=,DCF,.,ABE,CDF.,AB=CD,,,AD,BC,又,AE,=,CF,,,BE,=,DF.,A,D,B,C,E,F,典例精析,例1.已知:ABCD,E,F是对角线AC上的两点,并且,例,2,有一块形状如图 所示的玻璃,不小心把,EDF,部分打碎了,现在只测得,AE,=60cm,,,BC,=80cm,,,B,=60,且,AEBC,、,ABCF,你能根据测得的数据计算出,DE,的长度和,D,的度数吗?,解,AE,/,BC,,,AB,/,CF,四边形,ABCD,是平行四边形,.,D,=,B,=60,,,AD,=,BC,=60cm.,ED,=,AD,-,AE,=80-60=20cm.,答:,DE,的长度是,20cm,D,的度数是,60,.,例2 有一块形状如图 所示的玻璃,不小心把EDF部分打碎了,,A,1,A,3,A,2,A,B,C,练一练:,学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?,A1A3A2ABC练一练:学校买了四棵树,准备栽在花园里,已,如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度,经过度量,我们发现这些垂线段的长度都,相等,(,从图中也可以看到这一点,),平行线之间的距离,三,合作探究,猜想:,平行线间距离处处相等,.,如图,在方格纸上画两条互相平行的直线,在其中一条直线,1,如图,直线,a,/,b,,,A,B,是直线,a,上任意两点,,AC,b,,,BD,b,,垂足分别为,C,D,.,求证:,AC,=,BD,.,证明:,AC,CD,,,BD,CD,,,理论证明,a,b,A,B,C,D,1=2=90,.,AC,BD,.,AB,CD,,,四边形,ACDB,是平行四边形,.,AC,=,BD,.,2,1如图,直线a/b,A,B是直线a上任意两点,ACb,B,如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,(,如图:,AC,=,BD,),这个距离称为,平行线之间的距离.,归纳总结,(简记为:两条平行线间的距离处处相等).,如果两条直线互相平行,则其中一条直线上任意一点,A,B,思考:,两条,平行线之间,的距离与,点,和,点,之间的距离、,点到线,之间的距离有何区别与联系?,a,b,A,B,点到直线的距离只有一条,即过直线外点作直线的垂线段的长度;而平行线的距离有无数条即一直线任一点都可以得到一条两平行直线的距离.,AB思考:两条平行线之间的距离与点和点之间的距离、点到线之间,例,3,如图,直线,AE,/,BD,,点,C,在,BD,上,若,AE,=5,,,BD,=8,,,ABD,的面积为,16,,则,ACE,的面积为,.,A,B,C,D,E,分析:根据平行线之间的距离处处相等.,解析:设高为,h,则,S,ABD,=,BD,h,=16,h,=4,所以,S,ACE,=5 4=10.,10,例3 如图,直线AE/BD,点C在BD上,若AE=5,B,思考:,若垂线段改为夹在两条线段间的平行线段呢?它们是否相等呢?,由,“,两组对边分别平行的四边形是平行四边形,”,易知其围成的封闭图形为平行四边形,再由平行四边形性质易知,夹在两条平行线间的平行线段相等,.,思考:若垂线段改为夹在两条线段间的平行线段呢?它们是否相等呢,1.,如图,在,ABCD,中,(1)若,A,=130,则,B,=_,,C,=_,,D,=_.,(2)若,A,+,C,=200,则,A,=_,,B,=_.,(3)若,A,:,B,=5:4,则,C,=_,,D,=_.,(4)若,AB,=3,BC,=5,则它的周长=_.,C,D,A,B,50,130,50,100,80,100,80,1,6,当堂练习,1.如图,在ABCD中 (1)若A=130,则B,2.(1),在,ABCD,中,,A,=150,,,AB,=8cm,BC,=10cm,则,S,ABCD,=,.,提示:过点,A,作,AE,BC,于,E,,然后利用勾股定理求出,AE,的值.,40cm,2,(2),若点,P,是,ABCD,上,AD,上任意一点,那么,PBC,的面积是,.,20cm,2,提示:,PBC,与,ABCD,是同底等高.,2.(1)在ABCD中,A=150,AB=8cm,BC,解:在,ABCD,中,,AB,=,DC,AD,=,BC,(,平行四边形的对边相等,),AB,=8,,,DC,=8,又,AB,+,BC,+,DC,+,AD,=24,AD+BC=,(24,-,2,AB,)=8.,AD=BC=,4,.,3.,如图,在,ABCD,中,,AB,=8,,周长等于,24,,求其余三条边的长,.,B,C,D,A,解:在 ABCD中,AB=DC,AD=BC,3.如图,,4.,如图,已知平行四边形,ABCD,的对角线,AC,、,BD,相较于点,O,,过点,O,任做一条直线分别交,AD,CB,的延长线于点,E,、,F.,求证:,OE=OF,.,O,A,D,E,C,B,F,证明:,四边形,ABCD,是平行四边形,AO=CO,AE/CF,E=F,.,EOC=,FOC,AOE,COF,OE=OF,.,4.如图,已知平行四边形ABCD的对角线AC、BD相较于点O,O,3,-1,2,5,已知点,A,(,3,,,0,)、,B,(,-1,,,0,)、,C,(,0,,,2,),以,A,、,B,、,C,为顶点画平行四边形,你能求出第四个顶点,D,吗?,O,3,-1,2,(,4,,,2,),(,2,,,-2,),O,3,-1,2,(,-4,,,2,),O3-125已知点A(3,0)、B(-1,0)、C(0,2,平行四边形,课堂小结,两组对边分别平行的四边形是平行四边形,定义,性质,对边平行,对边相等,对角相等,夹在两条平行线间的平行线段处处相等,平行四边形课堂小结两组对边分别平行的四边形是平行四边形定义性,
展开阅读全文