游戏要好玩需发展良好的AI

上传人:545****25f 文档编号:252577178 上传时间:2024-11-17 格式:PPTX 页数:31 大小:1.60MB
返回 下载 相关 举报
游戏要好玩需发展良好的AI_第1页
第1页 / 共31页
游戏要好玩需发展良好的AI_第2页
第2页 / 共31页
游戏要好玩需发展良好的AI_第3页
第3页 / 共31页
点击查看更多>>
资源描述
,*,Intelligent Database Systems Lab,按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,N.Y.U.S.T.,I.M.,按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,*,Intelligent Database Systems Lab,Evolving Reactive NPCs for the Real-Time Simulation Game,Advisor,:,Dr.Hsu,Reporter,:,Wen-Hsiang Hu,Author,:,JinHyuk Hong and Sung-Bae Cho,IEEE Symposium on Computational Intelligence and Games,1,Outline,Motivation,Objective,Introduction,The game:Build&Build,Basic behavior model,Co-evolutionary behavior generation,Experiment and Results,Discussion,Conclusion,Personal Opinion,2,Motivation,AI in computer games has been highlighted in recent,but,manual works,for designing the AI,cost a great deal,.,3,Objective,Designing NPCs behaviors without relying on human expertise.,4,Basic behavior model,Two different grid scales are used for the input of,the neural network such as 55 and 1111.,five neural networks,are used to decide whether the associating,action,executes or not.,The game:Build&Build,random action probability:0.2,5,Co-evolutionary behavior generation,We use the,genetic algorithm,to generate behavior systems that are accommodated to several environments.,6,Experiment and Results,55 obtains lower winning averages for complex environment,while it performs better when the environment is rather simple.,7,Introduction,It is challengeable for many researchers to apply AI to control characters.(AI produce more complex and realistic games.),Finite state machines,and,rule-based systems,are the most popular techniques in,designing the movement of characters,.,While,neural networks,Bayesian network,and,artificial life,are recently adopted for,flexible behaviors,.,Evolution,generates useful strategies,automatically,.,This paper proposes a,reactive behavior system,composed of,neural networks,is presented,and the,system is optimized by,co-evolution,.,8,Rule based approach,AI of many computer games is designed with,rules based techniques,such as,finite state machines(FSMs),or,fuzzy logic,.,FSMs have a weak point of its stiffness;however,the,movement,of a character is apt to be,unrealistic,.,there is a trend towards fuzzy state machine,(FuSM).,9,Adaptation and learning:NNs,EAs,and Artificial life,The,adaptation,and,learning,in games will be one of the most major issues,making games more interesting and realistic,.,Neural network,and,evolutionary algorithms,(e.g.genetic algorithm)are promising artificial intelligence techniques for learning in computer games.,NN-is badly trained,GE-required too many computations and were too slow to produce useful results.,10,Co-evolution,Bysimultaneouslyevolvingtwoormorespecieswithcoupledfitness.,Superiorstrategiesforanenvironmenthavebeendiscoveredbyco-evolutionaryapproaches.,11,Reactivebehavior,Reactivemodelperformseffectivelysinceitconsidersthecurrentsituationonly.,Neuralnetworksandbehavior-basedapproachesarerecentlyusedforthereactivebehaviorofNPCskeepingtherealityofbehaviors.,12,Thegame:Build&Build,Build&Build,developedinthisresearchisareal-timestrategicsimulationgame,inwhich,twonationsexpandtheirownterritory,.,Eachnationhassoldierswhoindividuallybuildtownsandfightagainsttheenemies,whileatowncontinuallyproducessoldiersforagivenperiod.,13,Thegame:Build&Build,14,Designingthegameenvironment,Thegamestarts,twocompetitiveunits,inarestrictedland,withaninitialfund,.,Theunitsareabletotakesomeactionsatthenormallandbutnotattherockland.,Aunitcanbuildatownwhenthenationhasenoughmoney,whiletownsproduceunitsusingsomemoney.,15,Designingthegameenvironment,(cont.),16,DesigningNPCs,NPCcan moveby4directions,aswell as build towns,attackunitsortowns,and,mergewith other NPCs,.,Theattack actionsare automaticallyexecutedwhenanopponentlocates besidetheNPC.,17,DesigningNPCs,(cont.),18,DesigningNPCs,(cont.),19,Basicbehaviormodel(cont.),Twodifferent gridscales areused fortheinputofthe neuralnetwork suchas55 and1111.,20,Basicbehaviormodel(cont.),Inordertoactivelyseek a,dynamic situation,themodelselects arandom actionwith,a,probability(inthispaper,a,=0.2)inadvance.,five neuralnetworks,areusedtodecidewhethertheassociating,action,executesornot.,21,Co-evolutionarybehaviorgeneration,Weusethe,genetic algorithm,togeneratebehaviorsystems thatare accommodatedtoseveral environments.,Twopair-wise competition patterns areadopted to effectively calculatethefitnessofanindividual.,22,Co-evolutionarybehaviorgeneration,(cont.),Thefitnessofanindividual is measured by thescoresagainstrandomlyselected,M,opponents.,23,Experiment andResults,Four differentbattle,maps=demonstrate,theproposedmethod,ingenerating strategies,adaptivetoeach,environment.,24,Experiment andResults,(cont.),Thecasewith,1111showsmore diversebehaviors,than thatwith55,since it observes information on amorelargearea.,55obtainslowerwinning averages forcomplex environment,whileitperformsbetterwhentheenvironmentisrather simple.,25,Experiment andResults,(cont.),Fig.8.Winningratebetween 5,5behaviorand11,11behaviorateachgeneration on maptype 3.,The11,11showsthe betterperformancethan the55,since it considersmore vari
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 营销创新


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!