资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第三章,X,射线衍射的几何原理(,I,),3.0,序言,3.1,布拉格定律,3.2,衍射矢量方程和厄尔瓦德图解,3.3,劳埃方程组,第三章 X射线衍射的几何原理(I)3.0 序言,3.0,序言,X射线,晶体,衍射现象,不同衍射花样,电子散射,电磁波,干涉作用,测定晶体结构,研究与结构相关的一系列问题,周期性散射中心发出的相干散射波相互干涉,一、产生衍射线的原因:,3.0 序言X射线晶体衍射现象不同衍射花样电子散射电磁波干,衍射线束的方向:由晶胞的形状和大小决定,衍射线束的强度:由晶胞中原子的位置和种类决定,衍射线束的形状、大小:由晶体的形状和大小决定,二、,X,射线衍射理论:,在衍射现象与晶体结构之间建立起定性和定量的关系,衍射线束的方向:由晶胞的形状和大小决定二、X射线衍射理论:在,三、衍射线束的四种表示形式:,布拉格定律,衍射矢量方程,厄瓦尔德图解,劳埃方程,即衍射方向与晶体结构关系的四种表示形式,三、衍射线束的四种表示形式:布拉格定律即衍射方向与晶体结构关,3.1,布拉格定律,一、干涉加强与布拉格实验,3.1布拉格定律一、干涉加强与布拉格实验,X,射线沿,NaCl,晶体(,001,)方向平行入射,将晶体绕,O,轴转动角度,,同时转动计数管,2,:,实验结构:,当,=30,0,、,64,0,时,计数管有脉冲产生。,X射线沿NaCl晶体(001)方向平行入射,,二、布拉格定律的推证,1、一层原子面上散射X射线的干涉:,二、布拉格定律的推证1、一层原子面上散射X射线的干涉:,2、相邻原子面的散射X射线的干涉:,干涉加强的条件,(,布拉格方程,),:,:入射线波长;,d:,晶面间距;,:掠入射角、布拉格角或半衍射角;,2,:衍射角:,n:,为整数,称反射级数。,2、相邻原子面的散射X射线的干涉:干涉加强的条件(布,1,、选择反射,X,射线在晶体中的衍射实质上是晶体中各原子散射波之间的干涉结果。由于衍射线的方向恰好相当于原子面对入射线的反射。,一束可见光以任意角度投射到镜面上都可以产生反射,,而原子面对,X,射线的反射并不是任意的,只有当,、,d,三者之间满足布拉格方程时才能发生反射,,所以把,X,射线这种反射称为,选择反射,。,三、布拉格方程的讨论,1、选择反射 X射线在晶体中的衍射实质,2,、产生衍射的极限条件,根据布拉格方程,,sin,不能大于1,,因此:,对衍射而言,,n,的最小值为1,所以在任何可观测的衍射角下,产生衍射的条件为,2,d,,,这也就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍,否则不能产生衍射现象。,2、产生衍射的极限条件 根据布拉格方程,3,、干涉面和干涉指数,将布拉格方程中的,n,隐含在,d,中得到简化的布拉格方程:,把(,hkl),晶面的,n,级反射看成为与(,hkl),晶面平行、面间距为,(nh,nk,nl),的晶面的一级反射。面间距为,d,HKL,的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,我们把这样的反射面称为,干涉面,。干涉面的面指数称为,干涉指数,。,3、干涉面和干涉指数 将布拉格方程中的n隐含在d中,4,、衍射花样和晶体结构的关系,从布拉格方程可以看出,在波长一定的情况下,衍射线的方向是晶面间距,d,的函数。如果将各晶系的,d,值代入布拉格方程,可得:,由此可见,布拉格方程可以反映出晶体结构中晶胞大小及形状的变化,但是并未反映出晶胞中原子的品种和位置。,立方晶系:,正方晶系:,斜方晶系:,4、衍射花样和晶体结构的关系 从布拉格,(a),体心立方,a-,Fe a=b=c=0.2866 nm,(b),体心立方,W,a=b=c=0.3165 nm,(a)体心立方 a-Fe a=b=c=0.2866 nm(,(d),体心正交,:,a=0.286nm,b=0.300nm,c=0.320nm,(e),面心立方:,g-,Fe a=b=c=0.360nm,图,3-X,射线衍射花样与晶胞形状及大小之间的关系,(c),体心四方,a=b=0.286nm,c=0.320nm,(d)体心正交:(e)面心立方:g-Fe a=b=c=,一、任意两个阵点相干散射的示意图及简单推导方法,3.2,衍射矢量方程和厄尔瓦德图解,取,O,为坐标原点,,A,点的位置矢量,r=ma+nb+pc,,,S,0,和,S,分别为入射线和散射线的单位矢量,散射波之间的光程差为,:,相差为:,一、任意两个阵点相干散射的示意图及简单推导方法3.2衍射矢,垂直于正点阵中的,HKL,晶面,长度等于,HKL,晶面的晶面间距,d,HKL,的倒数,垂直于正点阵中的HKL晶面,二、衍射矢量方程,如图所示,当束,X,射线被晶面,P,反射时,假定,N,为晶面,P,的法线方向,入射线方向用单位矢量,S,0,表示,衍射线方向用单位矢量,S,表示,则,S-S,0,为衍射矢量,。,N,S,0,S,S-,S,0,二、衍射矢量方程 如图所示,当束X射线被晶,二、,厄尔瓦德图解,1,、原理:,要使(,HKL,)晶面发生反射,入射线必须沿一定方向入射,以保证反射线方向的矢量 的端点恰好落在倒易矢量 的端点上,即 的端点应落在,HKL,的倒易点上。,由于晶体中存在各种方位和各种面间距的晶面,因此当入射线沿一定方位入射时,可能同时有若干束衍射线产生,则可用厄尔瓦德图解法求衍射束方向。,二、厄尔瓦德图解1、原理:由于晶体中存在各种,2,、作图,1,)做晶体的倒易点阵,,O,*为倒易原点;,2,)入射线沿,OO*,入射,且令 ;,3,)以,O,为球心,以 为半径画一个球,反射球,;,4,)若球面与倒易点,A,相交,则,OA,是一衍射线方向。,2、作图1)做晶体的倒易点阵,O*为倒易原点;,由此可见,当,X,射线沿,OO*,方向入射,所有可能发生反射的晶面,其倒易点都应落在以,O,为球心,以,1/,为半径的球面上,即,在球面上的倒易阵点可以发生反射,不在球面上的倒易点一定不可以反射,,从球心指向倒易点的方向是相应晶面反射线的方向。,以上求衍射线方向的作图法称为,厄瓦尔德图解,由此可见,当X射线沿OO*方向入射,所有可,3.3,劳埃方程组,分别以阿,a,、,b,、,c,乘以上式,劳埃方程组矢量形式,3.3 劳埃方程组分别以阿a、b、c乘以上式劳埃方程组矢量,倒易点阵是晶体学中极为重要的概念之一,可简化晶体学计算,形象解释衍射现象,1921,由德国物理学家,Ewald,引入,X,射线领域,从数学上讲,倒易点阵是正点阵派生的图形,从物理上讲,正点阵与晶体结构相关,描述的是晶体中物质的分布规律,是物质空间;倒易点阵与晶体的衍射现象有关,它描述的是衍射强度的空间分布。,3.4,倒易点阵,倒易点阵是晶体学中极为重要的概念之一3.4 倒易点阵,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,X射线衍射的几何原理-应用物理系课件,
展开阅读全文