资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,八年级数学 第一章 证明,(,二,),2.,直角三角形(,3,),直角三角形全等的证明,主讲人:冯新虎,驶向,胜利的彼岸,三角形全等的判定,公理,:,三边对应相等的两个三角形全等(,SSS,),.,公理,:,两边及其夹角对应相等的两个三角形全等(,SAS,),.,公理,:,两角及其夹边对应相等的两个三角形全等(,ASA,),.,推论,:,两角及其中一角的对边对应相等的两个三角形全等(,AAS,),.,回顾,&,思考,1,想一想,:,两边及其中一边的对角对应相等的两个三角形全等,?,两边及其中一边的对角对应相等的两个三角形不一定全等,.,如果其中一边的所对的角是直角呢,?,如果其中一边的所对的角是直角,那么这两个三角形全等,.,请证明你的结论,.,驶向,胜利的彼岸,命题的证明,我能行,1,命题,:,两边及其中一边的对角对应相等的两个三角形不一定全等,.,老师提示,:,举反例证明假命题千万不可忘记噢,!,证明,:,这是一个假命题,只要举一个反例即可,.,如图,:,A,B,C,A,B,C,A,B,C,(1),(2),(3),由图,(1),和图,(2),可知,这两个三角形全等,;,由图,(1),和图,(3),可知,这两个三角形不全等,;,因此,两边及其中一边的对角对应相等的两个三角形不一定全等,.,命题的证明,我能行,2,驶向,胜利的彼岸,两边及其中一边的对角对应相等的两个三角形不一定全等,.,但如果其中一边的所对的角是直角,那么这两个三角形全等,.,老师期望,:,你能写出它的证明过程吗,?,你能用根据上面的证明用文字写出一个结论吗,?,已知,:,如图,在,ABC,和,A,B,C,中,AC=AC,AB=AB,C=C=90,0,.,求证,:,ABCA,B,C,.,A,B,C,A,B,C,分析,:,要证明,ABCA,B,C,只要能满足公理,(SSS),(SAS),(ASA),和推论,(AAS),中的一个即可,.,由已知和根据勾股定理易知,第三条边也对应相等,.,驶向,胜利的彼岸,直角三角形全等的判定定理及其,三种语言,我能行,3,定理,:,斜边和一条直角边对应相等的两个直角三角形全等,(,斜边,直角边或,HL).,如图,在,ABC,和,A,B,C,中,C=C=90,0,AC=AC,AB=AB(,已知,),Rt,ABCRtA,B,C,(HL,),.,A,B,C,A,B,C,驶向,胜利的彼岸,用,三角尺作角平分线,做一做,1,再过点,M,作,OA,的垂线,如图,:,在已知,AOB,的,两边,OA,OB,上分别取点,M,N,使,OM=ON;,过点,N,作,OB,的垂线,两垂线交于点,P,那么射线,OP,就是,AOB,的平分线,.,请你证明,OP,平分,AOB.,A,B,O,P,老师期望,:,你能写出它的证明过程吗,?,M,N,已知,:,如图,OM=ON,PMOM,PNON.,求证,:AOP=BOP.,先把它,转化为一个纯数学问题,:,蓄势待发,驶向,胜利的彼岸,如图,已知,ACB=BDA=90,0,要,使,ABCBDA,还需要什么条件,?,把它们分别写出来,.,增加,AC=BD;,议一议,A,B,C,D,增加,BC=AD;,增加,ABC=BAD,;,增加,CAB=DBA,;,你能分别写出它们的证明过程吗,?,若,AD,BC,相交于点,O,图中还有全等的三角形吗,?,O,你能写出图中所有相等的线段,相等的角吗,?,你能分别写出它们的证明过程吗,?,驶向,胜利的彼岸,知识在于积累,判断下列命题的真假,并说明理由,:,两个锐角对应相等的两个直角三角形全等,;,斜边及一个锐角对应相等的两个直角三角形全等,;,两直角边对应相等的两个直角三角形全等,;,老师期望,:,请分别将每个判断的证明过程书写出来,.,开启 智慧,一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等,.,回味无穷,直角三角形全等的判定定理,:,定理,:,斜边和一条直角边对应相等的两个直角三角形全等,(,斜边,直角边或,HL).,公理,:,三边对应相等的两个三角形全等(,SSS,),.,公理,:,两边及其夹角对应相等的两个三角形全等(,SAS,),.,公理,:,两角及其夹边对应相等的两个三角形全等(,ASA,),.,推论,:,两角及其中一角的对边对应相等的两个三角形全等(,AAS,),.,综上所述,直角三角形全等的判定条件可归纳为,:,一边及一个锐角对应相等的两个直角三角形全等,;,两边对应相等的两个直角三角形全等,;,切记,!,命题,:,两边及其中一边的对角对应相等的两个三角形不一定全等,.,即,(SSA),是一个假冒产品,!,小结 拓展,知识的升华,独立,作业,P,9,习题,1.5 1,2,题,.,祝你成功!,习题,1.5,独立作业,1,驶向,胜利的彼岸,1.,已知,:,如图,D,是,ABC,的,BC,边上的中点,DEAC,DF,AB,垂足分别为,E,F,且,DE=DF.,求证,:,ABC,是等腰三角形,.,分析,:,要证明,ABC,是等腰三角形,就需要证明,AB=AC;,进而需要证明,BC,所在的,BDFCDE;,而,BDFCDE,的条件,:,从而需要证明,B=C;,BD=CD,DF=DE,均为已知,.,因此,ABC,是,等腰三角形可证,.,D,B,C,A,F,E,老师期望,:,请将证明过程规范化书写出来,.,习题,1.5,独立作业,2,驶向,胜利的彼岸,2.,已知,:,如图,AB=CD,DEAC,BFAC,垂足分别为,E,F,DE=BF.,求证,:,(1)AE=AF;(2)ABCD.,老师期望,:,请将证明过程规范化书写出来,.,B,C,A,E,D,F,分析,:,(1),要证明,AE=CF,由此,AE=CF,可证,.,需要证明内错角,A=C;,而由,ABFCDE,可得证,.,(2),要证明,ABCD,由,已知条件,AB=CD,DEAC,BFAC,DE=BF.,可证得,ABFCDE,从而可得,AF=CE.,结束寄语,严格性之于数学家,犹如道德之于人,.,证明的,规范性,在于:条理清晰,因果相应,言必有据,.,这是初学证明者谨记和遵循的,原则,.,下课了,!,再 见,
展开阅读全文