资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,Field and Wave Electromagnetic,电磁场与电磁波,2021.5.7,1,作业情况,1班:人,2班:人,合计:人,情况:,2,Review,1.,Maxwells Equations,2.,Electromagnetic Boundary Conditions,The integral form,The differential form,Significance,Faradays law(,电磁感应定律,),Amperes circuital law(,全电流定律,),Gausss law(,高斯定理,),No isolated magnetic charge(,磁通连续性原理,),3,3.,Potential Functions,4.,Wave Equations and Their Solutions,4,5.,Time-Harmonic Fields,相量的模,正弦量的幅值,初位相,复角,频率是已知,?,频率,相量乘以,e,j,t,,再取实部,5,Chapter 8,Plane Electromagnetic Waves,4.,Plane Waves in Lossy Media,3.,Polarization of Plane Waves,5.,Group Velocity,6.,Flow of Electromagnetic Power and the Poynting Vector,1.,Plane Waves in Lossless Media,2.,Transverse Electromagnetic Waves,11.,Oblique Incidence at a Plane Dielectric Boundary,7.,Normal Incidence at a Plane Conducting Boundary,8.,Oblique Incidence at a Plane Conducting Boundary,9.,Normal Incidence at a Plane Dielectric Boundary,10.,Normal Incidence at Multiple Dielectric Interfaces,6,Main topic,Plane Electromagnetic Waves,1.,Plane Waves in Lossless Media,1.1,transverse electromagnetic waves,7,振动状态的传播叫做波动,它是非常重要的一种物质运动形式。我们和周围环境的联系大都是以波动的形式进行的。当你看书看电视看周围的一切时,信息就以光波的形式进入你的眼睛;当你沉醉于?春江花月夜?的动人意境时,优美的旋律就以声波的形式进入你的耳朵;割麦季节,当你漫步在乡间小道上时,偶尔一阵风吹过,你将看到广袤的麦海立刻就起了金黄色的麦浪,似乎一直要推进到天地相连的地平线处,而麦子仍在地里。当你将一枚小石子投入静静的池塘时,你将看到以小石子投入点为中心,产生了一圈又一圈的水波,它们不断向外扩展,直到抵达池塘边为止。如果水面上正好有一片树叶,你将看到树叶随水波上下翻动,前后摆动,但树叶和石子投人点的距离保持不变。世界充满了波,波的两种主要类型就是机械波和电磁波,光波是电磁波,它的传播不需要介质;声波、麦浪和水波都是机械波,它们的传播需要介质。,&1、波动,8,我们描述波动时,我们必须注意区分波动的两个方面,这就是振动的传播(波动)和介质中质点相对其平衡位置的振动,介质中各质点并不随波前进。根据波的传播方向和介质中质点位移的方向(即振动方向)间的关系,可以把波分成横波和纵波,横波就是介质中质点位移方向与传播方向垂直的波,纵波就是介质中质点位移方向与传播方向平行的波,如下图。光波是一种横波,声波是一种纵波,水波那么是横波和纵波的组合。,9,当波源所产生的扰动在介质中沿各个方向传播时,在任一时刻由相位相同的各点所构成的一个曲面,称为波面等相位面。波的传播方向沿波面的法线方向。,任一时刻由扰动所传播到的各点所构成的波面,称为波前,在波前上各点的振动相位就等于波源开始振动时的相位。因此波前是波面中最前面的一个。任一时刻的波面有无限多个,但波前只有一个。,在各向同性的介质中,当波源的大小和形状可以忽略即看成点波源时,扰动从点波源向各个方向传播出去。波前是球面而波线是与其波前垂直的许多通过球心的法线。我们把波前为球面的波叫做球面波,由点源产生;波前为圆柱面的波叫做柱面波,由无限长的线源产生;波前为平面的波叫做平面波,由无限大的面源产生。,10,11,&2、,行波与驻波,E,x,0,0,1,z,1,=0,2,=,O,波节,波腹,t,1,=0,E,x,(,z,t,),z,O,行波:电磁波向,正,z,方向传播。,空间各点合成波的相位相同,同时到达最大或最小。平面波在空间没有移动,因此称为驻波。,振动频率、振幅和传播速度相同而传播方向相反的两列波叠加时,就产生驻波。驻波形成时,空间各处的介质点或物理量只在原位置附近做振动,波停驻不前,而没有行波的感觉,所以称为驻波。形成驻波时,各处介质质点或物理量以不同的振幅振动。振幅最大处叫波腹,振幅最小处即看上去静止不动处叫波节。相邻两个波节或波腹之间的距离是半个波长。,驻波也是一种波的干预现象,但是一种特殊的干预现象,12,1.等相位面:,在某一时刻,空间具有相同相位的点构成的面称为等相位面。,等相位面又称为波阵面。,2.球面波:,等相位面是球面的电磁波称为球面波,。,3.平面波:,等相位面是平面的电磁波称为平面电磁波。,4.均匀平面波:,任意时刻,如果在平面等相位面上,每一点的,电场强度均相同,,这种电磁波称为均匀平面波。,&3、平面电磁波的根本概念,13,上式中,t,称为,时间相位,。,kz,称为,空间相位,。,空间,相位相等的点组成的曲面称为,波面,。,由上式可见,的平面为波面。因此,这种电磁波称为,平面波,。,因,E,x,(,z,),与,x,y,无关,在,的波面上,各点场强振幅相等。因此,这种平面波又称为,均匀,平面波。,z,14,时间相位,t,变化,2,所经历的时间称为,周期,(,T,)。,空间相位,kz,变化,2,所经过的距离称为,波长,(,),。,频率,描述电磁波的相位随,时间,的变化特性,。,k,表示,单位长度,内的相位变化,因此称为,相位常数,。,波长,描述电磁波的相位随,空间,的变化特性,。,一秒内,相位,变化,2,的次数称为,频率,(,f,)。,15,1.,Plane Waves in Lossless Media,In this and future chapters we focus our attention on wave behavior in the,sinusoidal steady state(,时谐、稳态,),using,phasors(,相量,),to great advantage.The,source-free(,无源,),wave equation for,free space(,自由空间,),becomes a,homogeneous vector Helmholtzs equation(,齐次的亥姆霍兹矢量方程,),:,Where,k,0,is the free-space wavenumber(,自由空间波数,),In,Cartesian coordinates,the above equation is equivalent to three,scalar,Helmholtzs equations,one each in the components,E,x,E,y,and,E,z,.Writing it for the component,E,x,we have,16,Consider a,uniform plane wave,(,均匀平面波,)characterized by a uniform,E,x,(uniform magnitude and constant phase,振幅均匀相位恒定,)over plane surfaces,perpendicular(,垂直,),to,z,;that is,Equation simplifies to,The solution is readily seen to be,Where,E,0,+,and,E,0,-,are arbitrary(and,in general,complex)constants that must be determined by,boundary conditions(,边界条件确定的任意常数,),.,17,复习:,二阶,常系数,线性,常微分,齐次,方程的解,18,Using,cos,t,as the reference and assuming,E,0,+,to be a,real,constant(zero reference phase at z=0),we have,At,t=0,it is a,cosine,curve with an amplitude,E,0,+,.,At successive times the curve effectively,travels,in the positive,z,direction.We have,then,a,traveling wave(,行波,),.If we fix our attention on a particular point(,a point of a particular phase,恒定相位的点,)on the wave,we set,From which we obtain the velocity of propagation of an equiphase front,等相位面,(the,phase velocity,相速度,)in free space,19,Wavenumber,波数,k,0,bears a definite relation to the wavelength.,Which measures the number of wavelengths in a complete cycle,一个周期内所含的波长数,hence its name.An,inverse relation,of equation is,The above two equations are valid without the subscript,0,if the medium is a,lossless material,such as a,perfect,dielectric,instead of free space.,在无耗介质中,去掉脚标0后上式仍然有效。,It is obvious without replotting that the,second phasor term,on the right side of that equation,represents a cosinusoidal wave traveling in the,z,direction with the same velocity,c,.,以相同速度c沿-z方向传播的余弦波。,20,The,associated,magnetic field,H,can be found from,与E相伴的磁场H,Which leads to,Thus,H,y,+,is the only nonzero component of,H,;and,We have introduced a new quantity,0,which is called,the intrinsic impedance of the free space,自由空间的本征阻抗,.,2
展开阅读全文