资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,要点梳理,1.,等比数列的定义,如果一个数列,,那么这个数列叫做等比数列,这个常数叫做等比数列的,,通常用字母,表示,.,2.,等比数列的通项公式,设等比数列,a,n,的首项为,a,1,,公比为,q,,则它的通项,a,n,=,.,6.3,等比数列及其前,n,项和,从第二项起,后项与相邻前项的比是,一个确定的常数(不为零),公比,q,a,1,q,n,-1,基础知识 自主学习,3.,等比中项,若,,那么,G,叫做,a,与,b,的等比中项,.,4.,等比数列的常用性质,(,1,)通项公式的推广:,a,n,=,a,m,(,n,,,m,N,*,).,(,2,)若,a,n,为等比数列,且,k,+,l,=,m,+,n,,(,k,,,l,,,m,,,n,N,*,),则,.,(,3,)若,a,n,,,b,n,(项数相同)是等比数列,则,a,n,(,0,),,,,a,n,b,n,,,仍是等比数列,.,G,2,=,a,b,q,n,-,m,a,k,a,l,=,a,m,a,n,5.,等比数列的前,n,项和公式,等比数列,a,n,的公比为,q,(,q,0,),其前,n,项和为,S,n,,当,q,=1,时,,S,n,=,na,1,;当,q,1,时,,S,n,=,6.,等比数列前,n,项和的性质,公比不为,-1,的等比数列,a,n,的前,n,项和为,S,n,,则,S,n,,,S,2,n,-,S,n,,,S,3,n,-,S,2,n,仍成等比数列,其公比为,.,q,n,基础自测,1.,设,a,1,=2,数列,a,n,+1,是以,3,为公比的等比数列,则,a,4,的值为(),A.80B.81C.54D.53,解析,由已知得,a,n,+1=(,a,1,+1),q,n,-1,即,a,n,+1=3,3,n,-1,=3,n,a,n,=3,n,-1,,,a,4,=3,4,-1=80.,A,2.,等比数列,a,n,中,,a,4,=4,则,a,2,a,4,a,6,等于(),A.4 B.8 C.32 D.64,解析,a,4,是,a,2,与,a,6,的等比中项,,a,2,a,6,=16.,a,2,a,4,a,6,=64.,D,3.,(,2009,广东文,,5,),已知等比数列,a,n,的公比为正数,且,a,3,a,9,=2 ,a,2,=1,则,a,1,=,(),A.2 B.C.D.,解析,设公比为,q,由已知得,a,1,q,2,a,1,q,8,=2(,a,1,q,4,),2,即,q,2,=2.,因为等比数列,a,n,的公比为正数,所以,q,=,故,a,1,=,C,4.,在等比数列,a,n,中,前,n,项和为,S,n,,若,S,3,=7,,,S,6,=63,,则公比,q,的值是(),A.2B.-2C.3D.-3,解析,方法一,依题意,,q,1,=7,,,=63.,得,1+,q,3,=9,q,3,=8,q,=2.,方法二,(,a,1,+,a,2,+,a,3,),q,3,=,a,4,+,a,5,+,a,6,而,a,4,+,a,5,+,a,6,=,S,6,-,S,3,=56,7,q,3,=56,q,3,=8,q,=2.,A,5.,(,2008,浙江理,,6,),已知,a,n,是等比数列,a,2,=2,a,5,=,则,a,1,a,2,+,a,2,a,3,+,+,a,n,a,n,+1,等于(),A.16(1-4,-,n,)B.16(1-2,-,n,),C.(1-4,-,n,)D.(1-2,-,n,),解析,a,n,a,n,+1,=4,(),n,-1,4,(),n,=2,5-2,n,故,a,1,a,2,+,a,2,a,3,+,a,3,a,4,+,+,a,n,a,n,+1,=2,3,+2,1,+2,-1,+2,-3,+,+2,5-2,n,C,题型一 等比数列的基本运算,【,例,1,】,已知,a,n,为等比数列,,a,3,=2,,,a,2,+,a,4,=,,求,a,n,的通项公式,.,根据等比数列的定义、通项公式及性质建立首项,公比的方程组,.,解,方法一,设等比数列,a,n,的公比为,q,,则,q,0,,,a,2,=,a,4,=,a,3,q,=2,q,,,+2,q,=,解得,q,1,=,,,q,2,=3.,思维启迪,题型分类 深度剖析,当,q,=,时,,a,1,=18,,,a,n,=18,(),n,-1,=2,3,3-,n,.,当,q,=3,时,,a,1,=,,,a,n,=,3,n,-1,=2,3,n,-3,.,综上所述,,a,n,=2,3,3-,n,或,a,n,=2,3,n,-3,.,方法二,由,a,3,=2,得,a,2,a,4,=4,,又,a,2,+,a,4,=,,,则,a,2,,,a,4,为方程,x,2,-,x,+4=0,的两根,,a,2,=,a,2,=6,a,4,=6,a,4,=,解得,或,.,当,a,2,=,时,q,=3,a,n,=,a,3,q,n,-3,=2,3,n,-3,.,当,a,2,=6,时,,q,=,a,n,=2,3,3-,n,a,n,=2,3,n,-3,或,a,n,=2,3,3-,n,.,(,1,)等比数列,a,n,中,,,a,n,=,a,1,q,n,-1,S,n,=,中有五个量,可以知三求二;(,2,)注意分,类讨论的应用,.,探究提高,知能迁移,1,已知等比数列,a,n,中,,a,1,=2,a,3,+2,是,a,2,和,a,4,的等差中项,.,(,1,)求数列,a,n,的通项公式;,(,2,)记,b,n,=,a,n,log,2,a,n,求数列,b,n,的前,n,项和,S,n,.,解,(,1,)设数列,a,n,的公比为,q,由题意知:,2(,a,3,+2)=,a,2,+,a,4,q,3,-2,q,2,+,q,-2=0,,即,(,q,-2)(,q,2,+1)=0.,q,=2,,即,a,n,=2,2,n,-1,=2,n,.,(,2,),b,n,=,a,n,log,2,a,n,=,n,2,n,S,n,=1,2+2,2,2,+3,2,3,+,+,n,2,n,.,2,S,n,=1,2,2,+2,2,3,+3,2,4,+,+,(,n,-1,),2,n,+,n,2,n,+1,.,-,得,-,S,n,=2,1,+2,2,+2,3,+2,4,+,+2,n,-,n,2,n,+1,=-2-(,n,-1),2,n,+1,.,S,n,=2+,(,n,-1,),2,n,+1,.,题型二 等比数列的判定与证明,【,例,2,】,(,2008,湖北文,,21,),已知数列,a,n,和,b,n,满足:,a,1,=,a,n,+1,=,a,n,+,n,-4,b,n,=(-1),n,(,a,n,-3,n,+21),其中 为实数,,n,为正整数,.,(,1,)证明:对任意实数,数列,a,n,不是等比数列,;,(,2,)证明:当 ,-18,时,数列,b,n,是等比数列,.,(,1,)可用反证法,.,(,2,)根据递推关系推出,b,n,+1,=-,b,n,,用 ,-18,说明,b,1,0,,即,b,n,0.,思维启迪,证明,(,1,)假设存在一个实数,使,a,n,是等比数列,则有,=,a,1,a,3,即,9=0,矛盾,.,所以,a,n,不是等比数列,.,(,2,),b,n,+1,=(-1),n,+1,a,n,+1,-3(,n,+1)+21,=(-1),n,+1,(,a,n,-2,n,+14),=-(-1),n,(,a,n,-3,n,+21)=-,b,n,.,又 ,-18,,所以,b,1,=-(+18)0.,由上式知,b,n,0,所以,(,n,N,*,).,故当 ,-18,时,数列,b,n,是以,-(+18),为首项,,为公比的等比数列,.,证明一个数列是等比数列的主要方法有,两种:一是利用等比数列的定义,即证明,(,q,0,n,N,*,),,二是利用等比中项法,即证明,=,a,n,a,n,+2,0(,n,N,*,).,在解题中,要注意根据欲证明,的问题,对给出的条件式进行合理地变形整理,构,造出符合等比数列定义式的形式,从而证明结论,.,探究提高,知能迁移,2,(,2009,全国,理,,19,),设数列,a,n,的前,n,项和为,S,n,已知,a,1,=1,,,S,n,+1,=4,a,n,+2.,(,1,)设,b,n,=,a,n,+1,-2,a,n,,证明数列,b,n,是等比数列;,(,2,)求数列,a,n,的通项公式,.,(,1,),证明,由已知有,a,1,+,a,2,=4,a,1,+2,解得,a,2,=3,a,1,+2=5,故,b,1,=,a,2,-2,a,1,=3.,又,a,n,+2,=,S,n,+2,-S,n,+1,=4,a,n,+1,+2-(4,a,n,+2)=4,a,n,+1,-4,a,n,于是,a,n,+2,-2,a,n,+1,=2(,a,n,+1,-2,a,n,),,即,b,n,+1,=2,b,n,.,因此数列,b,n,是首项为,3,公比为,2,的等比数列,.,(2),解,由(,1,)知等比数列,b,n,中,b,1,=3,公比,q,=2,所以,a,n,+1,-2,a,n,=3,2,n,-1,于是,因此数列 是首项为,公差为 的等差数列,所以,a,n,=(3,n,-1),2,n,-2,.,题型三 等比数列的性质及应用,【,例,3,】,在等比数列,a,n,中,,a,1,+,a,2,+,a,3,+,a,4,+,a,5,=8,且,=2,求,a,3,.,(,1,)由已知条件可得,a,1,与公比,q,的方程组,解出,a,1,、,q,,再利用通项公式即可得,a,3,.,(,2,)也可利用性质,=,a,1,a,5,=,a,2,a,4,直接求得,a,3,.,解,方法一,设公比为,q,显然,q,1,a,n,是等比数列,也是等比数列,公比,为,.,思维启迪,=,(,a,1,q,2,),2,=4,,,a,3,=,2.,方法二,由已知得,=4.,a,3,=,2.,由已知条件得,探究提高,在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质,“,若,m,+,n,=,p,+,q,则,a,m,a,n,=,a,p,a,q,”,,可以减少运算量,提高解题速度,.,知能迁移,3,(,1,)已知等比数列,a,n,中,有,a,3,a,11,=4,a,7,,,数列,b,n,是等差数列,且,b,7,=,a,7,求,b,5,+,b,9,的值,;,(,2,)在等比数列,a,n,中,若,a,1,a,2,a,3,a,4,=1,a,13,a,14,a,15,a,16,=,8,求,a,41,a,42,a,43,a,44,.,解,(,1,),a,3,a,11,=4,a,7,,,a,7,0,,,a,7,=4,,,b,7,=4,,,b,n,为等差数列,,b,5,+,b,9,=2,b,7,=8.,(,2,),方法一,a,1,a,2,a,3,a,4,=,a,1,a,1,qa,1,q,2,a,1,q,3,=,q,6,=1.,a,13,a,14,a,15,a,16,=,a,1,q,12,a,1,q,13,a,1,q,14,a,1,q,15,=,q,54,=8.,:,=,q,48,=8,q,16,=2,,,又,a,41,a,42,a,43,a,44,=,a,1,q,40,a,1,q,41,a,1,q,42,a,1,q,43,=,q,166,=,q,6,q,160,=(,q,6,),(,q,16,),10,=1,2,10,=1 024.,方法二,由性质可知,依次,4,项的积为等比数列,,设公比为,p,,设,T,1,=,a,1,a,2,a,3,a,4,=1,,,T,4,=,a,13,a,14,a,15,a,16,=8,,,T,4,=,T,1,p,3,=1,p,3,=8,,,p,=2.,T,11,=,a,41,a,42,a,43,a,44,=,T,1,p,10,=2,10,=1 024.,题型四 等差、等比数列的综合应用,【,例,4,】,(,12,分)已知等差数列
展开阅读全文