资源描述
*,第二章数 列,2.2,等差数列,(,二,),1,1.,能根据等差数列的定义推,导,出等差数列的重要性质,.,2.,能运用等差数列的性质解决有关问题,.,学习目标,2,栏目索引,知识梳理,自主学习,题型探究,重点突破,当堂检测,自查自纠,3,知识梳理,自主学习,4,知识点二推广的等差数列的通项公式,已知,等差数列,a,n,中任意的两项,a,m,,,a,n,,则,a,n,a,m,(,n,m,),d,.(,m,n,),思考,已知等差数列,a,n,中的,a,m,和,a,n,,如何求,d?,答案,5,知识点三等差数列的性质,1.,若,a,n,,,b,n,分别是公差为,d,,,d,的等差数列,则有,数列,结论,c,a,n,公差为,d,的等差数列,(,c,为任一常数,),c,a,n,公差为,cd,的等差数列,(,c,为任一常数,),a,n,a,n,k,公差为,2,d,的等差数列,(,k,为常数,,k,N,*,),pa,n,qb,n,公差为,pd,qd,的等差数列,(,p,,,q,为常数,),6,2.,等差数列的项的对称性,在有穷等差数列中,与首末两项,“,等距离,”,的两项之和等于首项与末项的和,,,即,a,1,a,n,a,2,a,n,1,a,3,a,n,2,.,3.,下标性质:在等差数列,a,n,中,若,m,n,p,q,(,m,,,n,,,p,,,q,N,*,),,则,.,特别的,若,m,n,2,p,(,m,,,n,,,p,N,*,),,则有,.,思考,等差数列,a,n,中,若,a,5,7,,,a,9,19,,则,a,2,a,12,_,,,a,7,_.,返回,a,m,a,n,a,p,a,q,答案,a,m,a,n,2,a,p,26,13,7,题型探究,重点突破,题型一等差数列的性质及应用,例,1,(1),已知等差数列,a,n,中,,a,2,a,6,a,10,1,,求,a,4,a,8,.,解析答案,8,9,(2),设,a,n,是公差为正数的等差数列,若,a,1,a,2,a,3,15,,,a,1,a,2,a,3,80,,求,a,11,a,12,a,13,的值,.,解析答案,反思与感悟,解,a,n,是公差为正数的等差数列,设公差为,d,(,d,0),,,a,1,a,3,2,a,2,,,a,1,a,2,a,3,15,3,a,2,,,a,2,5,,又,a,1,a,2,a,3,80,,,a,1,a,3,(5,d,)(5,d,),16,d,3,或,d,3(,舍去,),,,a,12,a,2,10,d,35,,,a,11,a,12,a,13,3,a,12,105.,10,解决本类问题一般有两种方法:一是运用等差数列,a,n,的性质:若,m,n,p,q,2,w,,则,a,m,a,n,a,p,a,q,2,a,w,(,m,,,n,,,p,,,q,,,w,都是正整数,),;二是利用通项公式转化为数列的首项与公差,基本量的关系,完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想,.,反思与感悟,11,跟踪训练,1,在等差数列,a,n,中:,(1),若,a,3,5,,则,a,1,2,a,4,_,;,解析答案,(2),若,a,1,a,2,a,3,24,,,a,18,a,19,a,20,78,,则,a,1,a,20,等于,_.,解析,a,1,2,a,4,a,1,(,a,3,a,5,),(,a,1,a,5,),a,3,2,a,3,a,3,3,a,3,15.,15,解析,由已知可得,(,a,1,a,2,a,3,),(,a,18,a,19,a,20,),24,78,(,a,1,a,20,),(,a,2,a,19,),(,a,3,a,18,),54,a,1,a,20,18.,18,12,题型二等差数列项的设法及,求解,例,2,已知四个数,构成,等差数列且是递增数列,四个数的平方和为,94,,首尾两数之积比中间两数之积少,18,,求此等差数列,.,解析答案,反思与感悟,解,设四个数为,a,3,d,,,a,d,,,a,d,,,a,3,d,,则,又因为是递增数列,所以,d,0,,,此等差数列为,1,2,5,8,或,8,,,5,,,2,1.,13,三个数或四个数成等差数列的设法,.,当三个数或四个数成等差数列且和为定值时,可设出首项,a,1,和公差,d,列方程组求解,,此时计算量稍大,,也可采用对称的设法,三个数时,设,a,d,,,a,,,a,d,;四个数时,设,a,3,d,,,a,d,,,a,d,,,a,3,d,,利用和为定值,先求出其中某个未知量,.,反思与感悟,14,解析答案,跟踪训练,2,已知三个数成等差数列并且数列是递增的,它们的和为,18,,平方和为,116,,求这三个数,.,15,解,方法一设这三个数为,a,,,b,,,c,,则由题意得,这三个数为,4,6,8.,方法二设这三个数为,a,d,,,a,,,a,d,,由已知可得,由,得,a,6,,代入,得,d,2,,,该数列是递增的,,d,2,舍去,,这三个数为,4,6,8.,16,题型三等差数列的综合问题,解析答案,(1),求证:数列,b,n,是等差数列,并写出,b,n,的通项公式;,17,解析答案,18,19,(2),求数列,a,n,的通项公式及数列,a,n,中的最大项与最小项,.,解析答案,反思与感悟,20,解决数列综合问题的方法策略,(1),结合等差数列的性质或利用等差中项,.,(2),利用通项公式,得到一个以首项,a,1,和公差,d,为未知数的方程,(,组,),或不等式,(,组,).,(3),利用函数或不等式的有关方法解决,.,反思与感悟,21,解析答案,跟踪训练,3,设等差数列,a,n,的公差为,d,.,若数列,为递减数列,则,(,),A.,d,0,C.,a,1,d,0,解析,设,b,n,,则,b,n,1,,由于,是递减数列,则,b,n,b,n,1,,,即,.,y,2,x,是单调增函数,,a,1,a,n,a,1,a,n,1,,,a,1,a,n,a,1,(,a,n,d,)0,,,a,1,(,a,n,a,n,d,)0,,即,a,1,(,d,)0,,,a,1,d,0.,C,22,题型四等差数列的实际应用,例,4,某公司,2009,年经销一种数码产品,获利,200,万元,从,2010,年起,预计其利润每年比上一年减少,20,万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?,解析答案,反思与感悟,解,记,2009,年为第一年,由题设可知第,1,年获利,200,万元,第,2,年获利,180,万元,第,3,年获利,160,万元,,,则每年获利构成等差数列,a,n,,且当,a,n,0,时,该公司经销此产品将亏损,.,设第,n,年的利润为,a,n,,因为,a,1,200,,公差,d,20,,,所以,a,n,a,1,(,n,1),d,220,20,n,.,由题意知数列,a,n,为递减数列,令,a,n,0,,即,a,n,220,20,n,11,,,即从第,12,年起,也就是从,2020,年开始,该公司经销此产品将亏损,.,23,解决等差数列实际应用问题,的方法策略,(1),解答数列实际应用问题的基本步骤:,审题,即仔细阅读材料,认真理解题意;,建模,即将已知条件翻译成数学,(,数列,),语言,将实际问题转化成数学问题;,判型,即判断该数列是否为等差数列;,求解,即求出该问题的数学解;,还原,即将所求结果还原到实际问题中,.,(2),在利用数列方法解决实际问题时,一定要弄清首项、项数等关键问题,.,反思与感悟,24,解析答案,跟踪训练,4,九章算术,“,竹九节,”,问题:现有一根,9,节的竹子,自上而下各节的容积成等差数列,上面,4,节的容积共,3,升,下面,3,节的容积共,4,升,则第,5,节的容积为,(,),解析,设自上而下,9,节竹子各节的容积构成等差数列,a,n,,其首项为,a,1,,公差为,d,,,B,25,解析答案,审题不仔细致误,易错点,例,5,首项为,24,的等差数列,从第,10,项开始为正数,则公差,d,的取值范围为,_.,返回,26,错因分析,解答本题,应注意理解,“,从第,10,项开始为正数,”,的含义,它表明,“,a,10,0,”,的同时还表明,“,a,9,0,”,这一条件,.,解析答案,27,误区警示,28,解答此类问题,应注意仔细审题,认真挖掘题目中的隐含条件,并注意应用,.,误区警示,返回,29,当堂检测,1,2,3,4,5,1.,在等差数列,a,n,中,,a,1,2,,,a,3,a,5,10,,则,a,7,等于,(,),A.5 B.8,C.10 D.14,解析,方法一设等差数列的公差为,d,,,则,a,3,a,5,2,a,1,6,d,4,6,d,10,,,所以,d,1,,,a,7,a,1,6,d,2,6,8.,方法二由等差数列的性质可得,a,1,a,7,a,3,a,5,10,,又,a,1,2,,所以,a,7,8.,B,解析答案,30,1,2,3,4,5,解析,由,a,2,a,4,a,6,a,8,a,10,5,a,6,80,,,a,6,16,,,C,解析答案,31,1,2,3,4,5,3.,已知等差数列,a,n,满足,a,1,a,2,a,3,a,101,0,,则有,(,),A.,a,1,a,101,0 B.,a,2,a,101,0,C.,a,3,a,99,0 D.,a,51,51,C,解析,a,1,a,2,a,101,0,,,又,a,1,a,101,a,2,a,100,a,3,a,99,2,a,51,,,a,51,0,a,3,a,99,.,解析答案,32,1,2,3,4,5,解析答案,4.,下列是关于公差,d,0,的等差数列,a,n,的四个命题:,p,1,:数列,a,n,是递增数列;,p,2,:数列,na,n,是递增数列;,p,4,:数列,a,n,3,nd,是递增数列,.,其中的真命题为,(,),A.,p,1,,,p,2,B.,p,3,,,p,4,C.,p,2,,,p,3,D.,p,1,,,p,4,解析,a,n,a,1,(,n,1),d,dn,a,1,d,,因为,d,0,,所以,p,1,正确;,a,n,3,nd,4,dn,a,1,d,,因,4,d,0,,所以是递增数列,,p,4,正确,故选,D.,D,33,1,2,3,4,5,解析答案,5.,在等差数列,a,n,中,已知,a,1,2,a,8,a,15,96,,则,2,a,9,a,10,_.,解析,a,1,2,a,8,a,15,4,a,8,96,,,a,8,24.,2,a,9,a,10,a,10,a,8,a,10,a,8,24.,24,34,课堂小结,2,等差数列,a,n,中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,3,等差数列,a,n,中,若,m,n,p,q,,则,a,n,a,m,a,p,a,q,(,n,,,m,,,p,,,q,N,*,),,特别地,若,m,n,2,p,,则,a,n,a,m,2,a,p,.,35,4,在等差数列,a,n,中,首项,a,1,与公差,d,是两个最基本的元素有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关,a,1,,,d,的关系列方程组求解但是,要注意公式的变形及整体计算,以减少计算量,返回,36,本课结束,37,
展开阅读全文