资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,第二章 工程决策与资金时间价值,本章主要阐述了工程项目评价最基本的方法,资金时间价值分析。通过学习,应了解资本与利息的关系、利息与利率的关系,熟悉名义利率与实际利率之间的关系,掌握资金等值的概念、特点、决定因素,学会现金流量图的表达方式以及各种条件下资金等值的计算,能够运用等值原理对工程项目进行经济分析。,本章提要,本 章 内 容,2.1,资金时间价值概述,2.2,单利与复利,2.3,资金等值计算,2.1,资金时间价值概述,货币的作用,体现在流通中,货币作为社会生产资金参与再生产的过程中即会得到增值、带来利润。,我们常说的“,时间就是金钱,”,是指资金在生产经营及其循环、周转过程中,随着时间的变化而产生的增值。,2.1.1,资金时间价值的含义及意义,2.1.1.1,资金时间价值的含义,资金的时间价值,,是指资金在生产和流通过程中随着时间推移而产生的增值。,资金的时间价值是商品经济中的普遍现象,资金之所以具有时间价值,概括地讲,是,基于以下两个原因:,(,1,),从社会再生产的过程来讲,对于投资者或生产者,其当前拥有的资金能够立即用于投资并在将来获取利润,而将来才可取得的资金则无法用于当前的投资,因此也就无法得到相应的收益。,(,2,),从流通的角度来讲,对于消费者或出资者,其拥有的资金一旦用于投资,就不能再用于消费。消费的推迟是一种福利损失,资金的时间价值体现了对牺牲现期消费的损失所应作出的必要补偿。,(,1,),资金时间价值是市场经济条件下的一个经济范畴。,(,2,),重视资金时间价值可以促使建设资金合理利用,使有限的资金发挥更大的作用。,(,3,),随着我国加入,WTO,,市场将进一步开放,我国企业也要参与国际竞争,要用国际通行的项目管理模式与国际资本打交道。,总之,,无论进行了什么样的经济活动,都必须认真考虑资金时间价值,千方百计缩短建设周期,加速资金周转,节省资金占用数量和时间,提高资金的经济效益。,2.1.1.2,研究资金时间价值的意义,衡量资金时间价值的尺度有两种:,其一为,绝对尺度,,即利息、盈利或收益;,其二为,相对尺度,,即利率、盈利率或收益率。,利率,和,利润率,都是表示原投资所能增加的百分数,因此往往用这两个量来作为衡量资金时间价值的相对尺度,并且经常两者不加区分,统称为,利率,。,(分别介绍利息和利率),2.1.1.3,衡量资金时间价值的尺度,(,1,),利息,在借贷过程中,债务人支付给债权人超过原借贷款金额(原借贷款金额常称作本金)的部分,就是,利息,。其计算公式为:,利息,=,目前应付(应收)的总金额,-,本金,从本质上看,,利息是由贷款产生的利润的一种再分配。,在工程经济学中,,利息是指占用资金所付出的代价或者是放弃现期消费所得的补偿。,(,2,),利率,利率,就是单位时间内(如年、半年、季、月、周、日等)所得利息额与本金之比,通常用百分数表示。即:,利率单位时间内所得的利息额,/,本金,100%,【,例,2.1】,某人现借得本金,2000,元,,1,年后付息,180,元,则年利率是多少?,【,解,】,根据公式,年利率,180/2000100%,9%,。,利率的高低由如下因素决定:,利率的高低首先取决于社会平均利润的高低,并随之变动。,在平均利润率不变的情况下,利率高低取决于金融市场上的借款资本的供求情况。,借出资本要承担一定的风险,而风险的大小也影响利率的高低。,通货膨胀对利率的波动有直接影响。,借出资本的期限长短对利率也有重大影响。,(,3,),利息和利率在技术经济活动中的作用,影响社会投资的多少。,影响社会资金的供给量。,利率是调节经济政策的工具。,2.1.2,现金流量图,2.1.2.1,现金流量的含义,在工程技术经济分析中,我们把项目视为一个系统,投入的资金、花费的成本、获得的收益,总可以看成是以资金形式体现的该系统的资金流出或流入。这种在项目整个寿命期内各时点上实际发生的资金流出或流入称为,现金流量,。,(流入和流出),流出系统的资金称,现金流出,,流入系统的资金称,现金流入,,现金流入与现金流出之差称,净现金流量,。,(,1,),财务现金流量,财务现金流量主要包括,项目财务现金流量、资本金财务现金流量、投资各方财务现金流量,。财务现金流量主要用于工程项目财务评价。,(,2,),国民经济效益费用流量,国民经济效益费用流量主要包括,项目国民经济效益费用流量、国内投资国民经济效益费用流量、经济外汇流量,。国民经济效益费用流量主要用于工程项目国民经济评价。,2.1.2.2,现金流量的分类,所谓现金流量图,,就是一种描述现金流量作为时间函数的图形,即把项目经济系统的资金流量绘入一时间坐标图中,表示出各项资金流入、流出与相应的对应关系,它能表示资金在不同时间点上流入与流出的情况。,现金流量图的一般表现形式,如图,2.1,所示,。,现金流量图包括,三大要素,:,大小、流向、时间点,。其中,,大小,表示资金数额,,流向,指项目的现金流入或流出,,时间点,指现金流入或流出所发生的时间。,2.1.2.3,现金流量图,图,2.1,现金流量图,2.2,单利与复利,利息和利率,是衡量资金时间价值的尺度,故计算资金的时间价值即是计算利息的方法。,利息计算有,单利,和,复利,之分。当计息周期在一个以上时,就需要考虑“单利”与“复利”的问题。复利是相对单利而言的,是以单利为基础来进行计算的。,2.2.1,单利与复利的计算,所谓单利计算,,是只对本金计算利息,而对每期的利息不再计息,从而每期的利息是固定不变的一种计算方法,即通常所说的“利不生利”的计息方法。,其利息计算公式如下:,I,n,=,Pin,而,n,期末的单利本利和,F,等于本金加上利息,即:,F=P(1+in),在计算本利和,F,时,要注意式中,n,和,i,反映的时期要一致。,2.2.1.1,单利计算,【,例,2.2】,有一笔,50 000,元的借款,借期,3,年,按每年,8%,的单利计息,试求到期时应归还的本利和。,【,解,】,用单利法计算,其现金流量,见图,2.2,所示,。,根据公式有:,F,P(1+in),50 000(1+8%3),62 000(,元,),即到期应归还的本利和为,62000,元。,图,2.2,采用单利法计算本利和,复利法,是在单利法的基础上发展起来的,它克服了单利法存在的缺点,,其基本思路是:,将前一期的本金与利息之和(本利和)作为下一期的本金来计算下一期的利息,也即通常所说的“利上加利”、“利生利”、“利滚利”的方法。,第,n,期期末复利本利和,F,n,的计算公式为:,F,n,=P(1+i),n,推导过程,如表,2.1,所示,。,2.2.1.2,复利计算,【,例,2.3】,在例,2.2,中,有一笔,50 000,元的借款,借期,3,年,若年利率仍为,8%,,但按复利计算,则到期应归还的本利和是多少?,【,解,】,用复利法计算,根据复利计算公式有:,F,n,=P(1+i),n,=50 000(1+8%),3,=62 985.60(,元,),与采用单利法计算的结果(,62000,元)相比增加了,985.60,元,这个差额所反映的就是利息的资金时间价值。,我国的银行存贷款分别是按单利和复利计息,本课程以后不特殊说明时是指复利计算,表,2.1,采用复利法计算本利和的推导过程,计息期数,期初本金,期末利息,期末本利和,1,P,Pi,F,1,=,P+Pi,=P(1+i),2,P(1+i),P(1+i) i,F,2,=P(1+i)+P(1+i)i=P(1+i),2,3,P(1+i),2,P(1+i),2,i,F,3,=P(1+i),2,+P(1+i),2,i=P(1+i),3,n-1,P(1+i),n-2,P(1+i),n-2,i,F,n-1,=P(1+i),n-2,+P(1+i),n-2,i=P(1+i),n-1,n,P(1+i),n-1,P(1+i),n-1,i,F,n,=P(1+i),n-1,+P(1+i),n-1,i=P(1+i),n,2.2.2,名义利率与实际利率,2.2.2.1,名义利率,所谓名义利率,,是指按年计息的利率,即计息周期为一年的利率。它是以一年为计息基础,等于每一计息期的利率与每年的计息期数的乘积。,例如,,每月存款月利率为,3,,则名义年利率为,3.6%,,即,312,个月,/,每年,=3.6%,。,实际利率,又称为,有效利率,,是把各种不同计息的利率换算成以年为计息期的利率。,例如,,每月存款月利率为,3,,则有效年利率为,3.66%,,即(,1+3,),12,-1=3.66%,。,需要注意的是,:,在资金的等值计算公式中所使用的利率都是指实际利率。当然,如果计息期为一年,则名义利率就是实际年利率。,名义利率与实际利率的关系?,2.2.2.2,实际利率,2.2.3,名义利率与实际利率的应用,设名义利率为,r,,一年中计息期数为,m,,则每一个计息期的利率为,r/m,。若年初借款,P,元,一年后本利和为:,F,P(1+r/m),m,其中,本金,P,的年利息,I,为,I,F-P=P(1+r/m),m,-P,根据利率定义可知,利率等于利息与本金之比。当名义利率为,r,时,实际利率为:,i=I/P=(F-P)/P=P(1+r/m),m,-P/P,所以,i=(1+r/m),m,-1,若年限为,n,年时,,F=P,(,1+r/m,),mn,若,m,无限大会如何?,2.2.3,名义利率与实际利率的应用,在式,F=P,(,1+r/m,),mn,中,如果令,m,则,,r/m0,这就是连续复利。即息期长度,t0,一年内的息期数变为“无数个”,F=,Plim,(,1+r/m,),mn,m,作变换:令,x=,r/m,则,mn,=,rn/x,F=,Plim,(,1+r/m,),mn,=F=,Plim,(,1+x,),1/x,rn,m x0,F=,Pe,rn,或,P=Fe,-,rn,式中,,P=,现值,,F=,连续复利本利和,,r=,名义年利率, n =,年数, e=,常数(,2.7182.),看例题,【,例,2.4】,某厂向外商订购设备,有两家银行可以提供贷款,甲银行年利率为,8%,,按月计息;乙银行年利率为,9%,,按半年计息,均为复利计算。试比较哪家银行贷款条件优越?,【,解,】,企业应当选择具有较低实际利率的银行贷款。,分别计算甲、乙银行的实际利率:,i,甲,(1+r/m),m,-1=(1+8%/12),12,-1,0.0830,8.30%,i,乙,=(1+r/m),m,-1=(1+9%/2),2,-1=0.0920=9.20%,由于,i,甲,i,乙,,故企业应选择向甲银行贷款。,从上例可以看出,,名义利率与实际利率存在下列关系:,(,1,),当实际计息周期为,1,年时,名义利率与实际利率相等;实际计息周期短于,1,年时,实际利率大于名义利率。,(,2,),名义利率不能完全反映资金的时间价值,实际利率才真实地反映了资金的时间价值。,(,3,),实际计息周期相对越短,实际利率与名义利率的差值就越大。,2.3,资金等值计算,“等值”,是指在时间因素的作用下,在不同的时间点上绝对值不等的资金而具有相同的价值。,利用等值的概念,可以把在一个(或一系列)时间点发生的资金金额换算成另一个(或一系列)时间点的等值的资金金额,这样的一个转换过程就称为,资金的等值计算,。,2.3.1,资金等值的概念,资金等值的特点是,,在利率大于零的条件下,资金的数额相等,发生的时间不同,其价值肯定不等;资金的数额不等,发生的时间也不同,其价值却可能相等。,决定资金等值的因素是:,资金数额;,金额发生的时间;,利率。,把将来某一时点的资金金额换算成现在时点的等值金额称为“,折现,”或“,贴现,”。,现值、终值和折现率的含义,将来时点上的资金折现后的资金金额称“,现值,”,.,与现值等价的将来某时点的资金金额称为“,终值,”或“,将来值,”。,一般地说,将,t+k,个时点上发生的资金折现到第,t,个时点,所得的等值金额就是第,t+k,个时点上资金金额在第,t,个时点上的现值。进行资金等值计算时使用的反映资金时间价值的参数叫,折现率或贴现率,。,2.3.2,计算资金时间价值的几个基本概念,(1),利率(折现率),i,在工程经济分析中,把根据未来的现金流量求现在的现金流量时所使用的利率称为,折现率,。利率和折现率一般不加以区分,均用,i,来表示,并且,i,一般指年利率(年折现率)。,(2),计息次数,n,计息次数,是指投资项目从开始投入资金(开始建设)到项目的寿命周期终结为止的整个期限,计算利息的次数,通常以“年”为单位。,(3),现值,P,现值,表示资金发生在某一特定时间序列始点上的价值。在工程经济分析中,现值表示在现金流量图中,0,点的投资数额或投资项目的现金流量折算到,0,点时的价值。折现计算法是评价投资项目经济效果时经常采用的一种基本方法。,(4),终值,F,终值,表示资金发生在某一特定时间序列终点上的价值。其含义是指期初投入或产出的资金转换为计算期末的期终值,即期末本利和的价值。,(5),年金,A,年金(也称年值),是指各年等额收入或支付的金额,通常以等额序列表示,即在某一特定时间序列期内,每隔相同时间收支的等额款项。,(6),等值,等值,是指在特定利率条件下,在不同时点的两笔绝对值不相等的资金具有相同的价值。,2.3.3,资金等值计算的基本公式,2.3.3.1,一次支付类型,一次支付,又称,整付,,是指所分析的系统的现金流量,无论是流入还是流出均在某一个时点上一次发生。,它又包括两个计算公式:,(,1,),一次支付终值复利公式,如果有一笔资金,按年利率,i,进行投资,,n,年后本利和应该是多少?也就是已知,P,,,i,,,n,,求终值,F,。解决此类问题的公式称为一次支付终值公式,其计算公式是:,F=P(1+i),n,公式,F=P(1+i),n,表示在利率为,i,,计息期数为,n,条件下,终值,F,和现值,P,之间的等值关系。,一次支付终值公式的现金流量图,如图,2.3,所示,。,在公式,F=P(1+i),n,中,,(1+i),n,又称为,终值系数,,记为,(F/,P,i,n,),。,这样,式,F=P(1+i),n,又可写为:,F=P(F/,P,i,n,),【,例,2.5】,现在把,500,元存入银行,银行年利率为,4%,,计算,3,年后该笔资金的实际价值。,【,解,】,这是一个已知现值求终值的问题,其现金流量图,见图,2.4,所示,。,由公式,F=P(1+i),n,可得:,F=P(1+i),3,=500(1+4%),3,=562.43(,元,),即,500,元资金在年利率为,4%,时,经过,3,年后变为,562.43,元,增值,62.43,元。,这个问题也可以利用查表计算求解。,由复利系数表(书附录)可查得:,(F/P,4%,3)=1.1249,所以,,F=P(F/,P,i,n,)=P(F/P,4%,3)=5001.1249=562.45,(元),(,2,),一次支付现值复利公式,如果我们希望在,n,年后得到一笔资金,F,,在年利率为,i,的情况下,现在应该投资多少?也即是已知,F,,,i,,,n,,求现值,P,。解决此类问题用到的公式称为一次支付现值公式,其计算公式为:,P=F(1+i),-n,其现金流量图,如图,2.5,所示,。,在上式中,,(1+i),-n,又称为现值系数,记为,(P/,F,i,n,),,它与终值系数,(F/,P,i,n,),互为倒数,可通过查表求得。因此,又可写为:,P=F(P/,F,i,n,),【,例,2.6】,某企业,6,年后需要一笔,500,万元的资金,以作为某项固定资产的更新款项,若已知年利率为,8%,,问现在应存入银行多少钱?,【,解,】,这是一个根据终值求现值的问题,其现金流量图,见图,2.6,所示,。,根据公式可得:,P=F(1+i),-n,=500(1+8%),-6,=315.10(,万元,),即现在应存入银行,315.10,万元。,也可以通过查表得出。从附表可查得:,(P/F,8%,6)=0.6302,所以,,P=F(P/,F,i,n,)=F(P/F,8%,6)=315.10,(万元),图,2.3,一次支付终值公式现金流量图,图,2.4,现金流量图,图,2.5,一次支付现值公式现金流量图,图,2.6,一次支付求现值现金流量图,等额支付,是指所分析的系统中现金流入与现金流出可在多个时间点上发生,而不是集中在某一个时间点,即形成一个序列现金流量,并且这个序列现金流量额的大小是相等的。,它包括四个基本公式:,(,1,),等额支付序列年金终值复利公式,其含义是:,在一个时间序列中,在利率为,i,的情况下连续在每个计息期的期末支付一笔等额的资金,A,,求,n,年后由各年的本利和累计而成的终值,F,。也即已知,A,,,i,,,n,,求,F,。,其现金流量图,如图,2.7,所示,。,2.3.3.2,等额支付类型,各期期末年金,A,相对于第,n,期期末的本利和可用,表,2.2,表示,。,F=A(1+i),n-1,+A(1+i),n-2,+A(1+i),n-3,+A(1+i)+A,上式两边同时乘以(,1+i,)则有:,F(1+i)=A(1+i),n,+A(1+i),n-1,+A(1+i),n-2,+A(1+i),n-3,+A(1+i),后式减前式得:,F(1+i)-F=A(1+i),n,-A,即:,F=A (1+i),n,-1/i,也可以表示为:,F=A(F/,A,i,n,),【,例,2.7】,某大型工程项目总投资,10,亿元,,5,年建成,每年末投资,2,亿元,年利率为,7%,,求,5,年末的实际累计总投资额。,【,解,】,这是一个已知年金求终值的问题,其现金流量图,见图,2.8,所示,。,根据公式可得:,F=A (1+i),n,-1/i=11.5(,亿元,),此题表示若全部资金是贷款得来,需要支付,1.5,亿元的利息。,也可以通过查表得出。,(,2,),偿债基金公式,其含义是:,为了筹集未来,n,年后需要的一笔偿债资金,在利率为,i,的情况下,求每个计息期末应等额存储的金额。也即已知,F,,,i,,,n,,求,A,。,其现金流量图,如图,2.9,所示,。,其计算公式可根据前式推导得出:,A=Fi/(1+i),n,-1,又可写为:,A=F(A/,F,i,n,),【,例,2.8】,某企业,5,年后需要一笔,50,万元的资金用于固定资产的更新改造,如果年利率为,5%,,问从现在开始该企业每年末应存入银行多少钱?,【,解,】,这是一个已知终值求年金的问题,其现金流量图,见图,2.10,所示,。,根据公式有:,A=Fi/(1+i),n,-1=F(A/,F,i,n,),=50(A/F,5%,5)=500.1810,=9.05(,万元,),即每年末应存入银行,9.05,万元。,(,3,),资金回收公式,其含义是:,期初一次投资数额为,P,,欲在,n,年内将投资全部收回,则在利率为,i,的情况下,求每年应等额回收的资金。也即已知,P,,,i,,,n,,求,A,。其现金流量图,如图,2.11,所示,。,资金回收公式可根据偿债基金公式和一次支付终值公式来推导,即:,A=Fi/(1+i),n,-1=Pi(1+i),n,/(1+i),n,-1,又可写为:,A=P(A/,P,i,n,),【,例,2.9】,某项目投资,100,万元,计划在,8,年内全部收回投资,若已知年利率为,8%,,问该项目每年平均净收益至少应达到多少?,【,解,】,这是一个已知现值求年金的问题,其现金流量图,见图,2.12,所示,。,根据公式有:,A=Pi(1+i),n,/(1+i),n,-1=P(A/,P,i,n,),=1000.174=17.40,(万元),即每年的平均净收益至少应达到,17.40,万元,才可以保证在,8,年内将投资全部收回,(,4,),年金现值公式,其含义是:,在,n,年内每年等额收支一笔资金,A,,则在利率为,i,的情况下,求此等额年金收支的现值总额。也即已知,A,,,i,,,n,,求,P,。,其现金流量图,如图,2.13,所示,。,其计算公式可表示为:,P= A(,1+i),n,-1/i(1+i),n,又可写为:,P=A(P/,A,i,n,),【,例,2.10】,设立一项基金,计划在从现在开始的,10,年内,每年年末从基金中提取,50,万元,若已知年利率为,10%,,问现在应存入基金多少钱?,【,解,】,这是一个已知年金求现值的问题,其现金流量图,见图,2.14,所示,。,根据公式有:,P=A (1+i),n,-1/i(1+i),n,=A(P/,A,i,n,),=A(P/A,10%,10)=506.1446,=307.23,(万元),图,2.7,年金终值公式现金流量图,表,2.2,普通年金复利终值计算表,期数,1,2,3,n-1,n,每期末年金,A,A,A,A,A,n,期末年金终值,A(1+i),n-1,A(1+i),n-2,A(1+i),n-3,A(1+i),A,图,2.8,例,2.7,现金流量图,图,2.9,偿债基金公式现金流量图,图,2.10,已知终值求年金现金流量图,图,2.11,资金回收公式现金流量图,图,2.12,已知现值求年金现金流量图,图,2.13,年金现值公式现金流量图,图,2.14,已知年金求现值现金流量图,均匀梯度序列的梯度序列将来值现金流量图,如图,2.15,所示,。,第一年年末的支付是,A,1,,第二年年末的支付为,A,1,+G,,以后每年都比上一年增加一笔支付,G,,第,n,年年末的支付是,A,1,+(n-1)G,。梯度序列的将来值,F,2,计算如下:,2.3.3.3,均匀梯度序列公式,而与,F,2,等值的等额年值,A,2,为,则梯度序列的等额年值,【,例,2.11】,某人第一年支付一笔,10 000,元的保险金,之后,9,年内每年少支付,1000,元,若,10,年内采用等额支付的形式,则等额支付款为多少时等价于原保险计划,?,【,解,】,根据公式,(2.20),并查书中的附表求得,A,10 000-1000(A/G,,,i,10),10 000-10003.8713,6128.7(,元,),图,2.15,均匀梯度序列现金流量图,0 1 2 3 n-1 n,G,A,1,A,1,+ G,A,1,+ 2G,A,1,+ (n-1)G,A,1,2G,(n-1)G,(1),方案的初始投资,假定发生在方案的寿命期初,即“零点”处;方案的经常性支出假定发生在计息期末。,(2),P,是在计算期初开始发生(零时点),,F,在当前以后第,n,年年末发生,,A,是在考察期间各年年末发生。,(3),利用公式进行资金的等值计算时,要充分利用现金流量图。现金流量图不仅可以清晰、准确地反映现金收支情况,而且有助于准确确定计息期数,使计算不致发生错误。,2.3.3.4,公式应用中应注意的问题,(4),在进行等值计算时,如果现金流动发生时间与计息期不同时,就需注意实际利率与名义利率的换算。,如例,2.12,所示,。,(5),利用公式进行计算时,要注意现金流量计算公式是否与等值计算公式中的现金流量计算公式相一致。如果一致,可直接利用公式进行计算;否则,应先对现金流量进行调整,然后再进行计算。,如例,2.13,所示,。,【,例,2.12】,某项目采用分期付款的方式,连续,5,年每年末偿还银行借款,150,万元,如果银行借款年利率为,8%,,按季计息,问截至到第,5,年末,该项目累计还款的本利和是多少?,【,解,】,首先求出现金流动期的等效利率,也即实际年利率。根据公式有:,i=(1+r/m),m,-1=8.24%,这样,原问题就转化为年利率为,8.24%,,年金为,150,万元,期限为,5,年,求终值的问题。,然后根据等额支付序列年金终值公式,有:,F=A(1+i),n,-1/i=884.21(,万元,),即该项目累计还款的本利和是,884.21,万元。,【,例,2.13】,某企业,5,年内每年初需要投入资金,100,万元用于技术改造,企业准备存入一笔钱以设立一项基金,提供每年技改所需的资金。如果已知年利率为,6%,,问企业应该存入基金多少钱?,【,解,】,这个问题的现金流量图,如图,2.17,所示,。,调整后的现金流量情况可,参考图,2.18,所示,。,由图,2.18,可知,这是一个已知,A,,,i,,,n,,求,P,的问题。根据年金现值公式,(2.18),,有:,P=A(P/,A,i,n,),100(1+6%)(P/A,6%,5)= 446.51(,万元,),即企业现在应该存入基金,446.51,万元。,图,2.17,预付年金的等值变换,图,2.18,调整后的现金流量图,2.3.4,等值计算,2.3.4.1,计息周期等于支付周期,【,例,2.14】,年利率为,12%,,每半年计息一次,从现在起,连续,3,年,每半年作,100,万元的等额支付,问与其等值的现值为多少?,【,解,】,每计息期的利率,i=12%/2=6%,m=32=6,P=A(P/,A,i,n,),100(P/A,6%,6),=1004.9173=491.73(,万元,),【,例,2.15】,年利率为,10%,,每半年计息,1,次,从现在起连续,3,年的等额年末支付为,500,万元,与其等值的第,0,年的现值是多少?,【,解,】,方法一:,先求出支付期的有效利率,支付期为,1,年,则有效年利率为,i=(1+r/m),m,-1=(1+10%/2),2,-1=10.25%,则,P=A(1+i),n,-1/i(1+i),n,=1237.97(,万元,),方法二:,可把等额支付的每一个支付看作为一次支付,利用一次支付现值公式计算。,2.3.4.2,计息周期小于支付周期,P=500(1+10%/2),-2,+500(1+10%/2),-4,+ 500(1+10%/2),-6,=1237.97,(万元),方法三:,取一个循环周期,使这个周期的年末支付变成等值的计息期末的等额支付序列,从而使计息期和支付期完全相同,则可将有效利率直接代入公式计算。,如图,2.20,所示,。,在年末存款,500,万元的等效方式是在每半年末存入,A=500(A/F,i,n)=500(A/F,5%,2),243.9,(万元),则,P=A(P/,A,i,n,),243.9(P/A,5%,6)=1237.97,(万元),图,2.20,现金流量图,【,例,2.16】,现金流量图,如图,2.21,所示,,年利率为,12%,,每季度计息,1,次,求年末终值,F,为多少?,【,解,】,根据现金流量图求得终值:,F=(-300+200)(1+12%/4),4,+300(1+12%/4),3,+100(1+12%/4)2-300(1+12%/4,),+100,=116.63,(万元),2.3.4.3,计息周期大于支付周期,图,2.21,现金流量图,0,n,t,P,F,1 2 3 4,A=F (A/F , i , n),F=P (F/P, i ,n),P=F ( P/F , i , n),F=A (F/A , i , n),A=P (A/P , i , n),P=A ( P/A , i , n),A A A A A,A A A,符号:,i=,利率,/,息期,n=,息期数,P=,货币的现值,F=,货币的将来值,A=,连续,n,期的等额系列期末现金流入或支出。,整付,公式:,本利和公式:,F=P(1+i),n,,,现值公式:,P=F (1+i),-n,等额,系列公式:,本利和公式,: F=A(1+i),n,-1/ i,现值公式,:P=A(1+i),n,-1/i(1+i),n,偿债基金,:,A = F i /(1+i),n,-1,资金回收公式,:,A=P i (1+ i),n,/(1+i),n,-1,复利计算公式,投资方式,已知,求,计算公式,系数,系数的经济含义(折现率,i, n,期条件下),一次性支付,P,F,F=P (1+i),n,(F/,P,i,n,)= (1+i),n,现值一,元钱的,复利本利和,F,P,P=F (1+i),-n,(P/,F,i,n,)= (1+i),-n,将来的一元等值于多少现值,分期支付,A,F,F=A(1+i),n,-1/i,(F/,A,i,n,)=(1+i),n,-1/i,每,期末等额支出一元的复利本利和,A,P,P=A(1+i),n,-1,/i(1+i),n,(P/,A,i,n,)=(1+i),n,-1/i(1+i),n,每期末等额支出一元等值于现值多少,P,A,A=Pi(1+i),n,/ (1+i),n,-1,(A/,P,i,n,)=i(1+i),n,/(1+i),n,-1,现值为一元等值于每期末等额支付多少,F,A,A=Fi/(1+i),n,-1,(A/,F,i,n,)=i/(1+i),n,-1,终值为一元等值于每期末等额支付多少,本章总结,2.1,资金时间价值概述,2.1.1,资金时间价值的含义及意义,资金时间价值的含义;研究资金时间价值的意义;衡量资金时间价值的尺,度(利息和利率),2.1.2,现金流量图,现金流量的含义;分类;现金流量图的表示方法;,2.2,单利与复利,2.2.1,单利与复利的计算,-,概念和计算公式,2.2.2,名义利率与实际利率,-,概念和计算公式,2.2.3,名义利率与实际利率的应用,-,二者关系,2.3,资金等值计算,2.3.1,资金等值的概念,2.3.2,计算资金时间价值的几个基本概念,2.3.3,资金等值计算的基本公式,一次支付类型;等额支付类型;均匀梯度序列公式;公式应用中应注意的,问题,2.3.4,等值计算,1.,对一个正常的建设项目,以房地产项目为例,,(,1,)画出其现金流量图;,(,2,)标示出现金流入和流出项的含义;,(,3,)说明各个现金流量的大小关系;,(,4,)说明什么情况下项目盈利。,2.,思考题,在,i,,,n,一定且正常的情况下,各个复利系数的大小关系。,本章思考题,1,资金时间价值的含义?,2,投资项目评估中为什么要使用复利来计算资金的时间价值?,3,某人现在借出,1000,元,年利率为,6%,,借期,5,年。若考虑一次收回本利,,5,年后他将收回多少款额?,4,如果银行利率为,5%,,为了在,5,年后获得一万元款项,现在应存入多少现金?,5,某工程计划投资,10,亿元,施工期为,5,年,假设每年分摊投资各为,2,亿元。如果全部投资由银行贷款,贷款年利率为,7%,,问工程建成投产时实际欠银行资金多少?,本章作业,6,某人现在借款,1000,元,年利率为,6%,,若要求五年内等额偿还,试求各年末该偿付的金额。,7,如果为了在,10,年后能够更新一台设备,预计其时价格将为,100,万元,在银行年利率,5%,不变的情况下,每年末应储存多少资金?,8,某企业采用自动控制生产流水线,一次性投资,250,万元,,10,年后残值为,50,万元。折现率为,5%,。若按等额值回收投资,每年应回收投资若干?,本章作业,9,某投资者现存款,20000,元,三年后再存入,5000,元,五年后再存入,10000,元,问多少年后,可以一次从银行取出本利和,100000,元?年利率为,6%,。,10,计算图中移动等差数列的相当年金数列,年利率为,5%,。,本章作业,0,1,2,3,4,5,6,7,50,50,50,70,90,110,130,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,本章作业,
展开阅读全文