资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,TSINGHUA UNIVERSITY,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第二章 作业,2-1 a,、,b,、,c,、,d,;,2-2,,,2-3,,,2-4,,,2-5,;,2-7,,,2-9,,,2-10,,,2-12,,,2-13,;,2-14,,,2-17,;,2-18,;,2-19,第二章 轴向拉伸和压缩,Axial tension and compression,桥的拉杆(拉索),挖掘机,的顶杆,火车卧铺的撑杆,广告牌的立柱与灯杆,小亭的立柱,网架结构中的杆,钢拉杆和连杆,受力特征,外力特征:,作用于杆件上的外力或其合力的作用线沿杆件的轴线。,变形特征,:,杆件产生轴向的伸长或缩短。,受力简图,:,反映杆件几何特征和受力特征的简化图形。,截面法、轴力与轴力图,拉压杆件的变形分析,拉压杆件横截面上的应力,主要内容,拉压杆件斜截面上的应力,材料在拉伸和压缩时的力学性能,安全因数 许用应力 强度条件,连接部分的强度计算,拉压超静定问题,2.1,截面法、轴力与轴力图,内力,(,internal force,),由外力作用引起的、物体内相邻两部分间因变形而产生的相互作用力。,问题:如何求内力?内力在物体内如何分布?,平衡距离,排斥力,吸引力,截面法,:,为了求某个截面上的内力,假想用截面将构,件剖成两部分,在截开的截面上,用内力代,替,另一部分对它的作用,。,F,1,F,2,F,3,F,n,F,1,F,3,F,2,F,n,假想截面,分布内力,2.1,截面法、轴力与轴力图,内力,是,连续地分布在截面各个点上的空间力系,,一般情况下可向截面,形心,简化,合成三个主矢和三个主矩分量,即内力分量:,*,坐标系:,x,轴,-,杆件轴线,yz,平面,截面所在平面,2.1,截面法、轴力与轴力图,+,当所有外力均沿杆的轴线方向作用时,杆的横截面上只有沿轴线方向的一个内力分量,这个内力分量称为,“轴力”,用,F,N,表示。,杆件上某个,截面,“,两侧,”,的轴力必须具有“相同”的正负号。,约定:使杆件受拉的轴力为正;受压的轴力为负。,或,“轴力方向”与截面“法向”一致时,轴力为正;反之,为负。,F,N,F,N,F,F,F,F,N,F,N,F,绘制轴力图的方法与步骤:,(2),根据杆件上的载荷以及约束力,确定轴力图的分段点:集中力作用处为轴力图的分段点;,(3),应用截面法,用假想截面从控制面处将杆件截开,在截开的截面上,画出未知轴力,并假设为正方向;对截开的部分杆件建立平衡方程,确定轴力的大小与正负;,-,求内力,(4),建立,F,N,x,坐标系,将所求得的轴力值标在坐标系中,画出轴力图。,(1),确定作用在杆件上的外载荷与约束力,-,求外力,表示,轴力,沿,杆轴线方向,变化,的图形,称为,轴力图,。,C,A,B,直杆,,A,端固定,在,B,、,C,两处作用有集中载荷,F,1,和,F,2,,,其中,F,1,5,kN,,,F,2,10,kN,。,F,1,F,2,l,l,C,A,B,l,l,F,1,F,2,F,A,试画出:,杆件的轴力图。,例题,1,解:,1.,确定,A,处的约束力,A,处虽然是固定端约束,但由于杆件只有轴向载荷作用,所以只有一个轴向的约束力,F,A,。,求得,F,A,5,kN,由平衡方程,2.,确定控制面,用假想截面分别从控制面,A,、,B,、,B,、,C,处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡。,C,A,B,F,1,F,2,l,l,C,A,B,l,l,F,1,F,2,F,A,在集中载荷,F,2,、,约束力,F,A,作用处的,A,、,C,截面,以及集中载荷,F,1,作用点,B,处的上、下两侧横截面都是控制面。,B,B,3.,应用截面法求控制面上的轴力,用假想截面从,控制面,A,处将杆截开,假设,横截面上的轴力均为正方向,(拉力),并考察截开后,A,面以下部分,的,平衡,:,C,A,B,l,l,F,1,F,2,F,A,B,B,C,A,B,l,l,F,1,F,2,F,N,A,求得,A,截面,上的轴力,求,A,截面的轴力,C,A,B,l,l,F,1,F,2,F,A,B,B,C,B,l,F,1,F,2,B,F,N,B,求,B,截面的轴力,求得,截面,上的轴力:,用假想截面从,控制面,处将杆截开,假设,横截面,上的轴力为正方向(拉力),并考察截开后,以,下部分的平衡:,C,A,B,l,l,F,1,F,2,F,A,B,B,F,N,B,C,l,F,2,B,求,截面的轴力,用假想,截面从,处,将杆截开,假设,横截面,上的轴力均为正方向(拉力),并考察,截开后,以,下部分,的平衡:,求得,截面,上的轴力:,C,A,B,l,l,F,1,F,2,F,A,B,B,F,N,C,C,l,F,2,求,截面的轴力,用假想,截面从,处,将杆截开,假设,横截面,上的轴力均为正方向(拉力),并考察,截开后,以,下部分,的平衡:,求得,截面,上的轴力:,4.,建立,F,N,x,坐标系,,,画轴力图,F,N,x,坐标系中,x,坐标轴沿着杆件的轴线方向,,F,N,坐标轴垂直于,x,轴。,将所求得的各控制面上的,轴力标在,F,N,x,坐标系中,,得到,a,、,b,、,b,和,c,四点。因为在,AB,之间以及,BC,之间,没有其他外力作用,故这两段中的轴力分别与,A,(,或,B,)截面以及,C,(,或,B,)截面相同。这表明,a,点与,b,”,之间、,c,点与,b,之间的轴力图为平行于,x,轴的直线。于是,得到杆的轴力图。,C,A,B,l,l,F,1,F,2,F,A,B,B,F,N,/,kN,O,x,C,A,B,F,1,F,2,l,l,C,A,B,l,l,F,1,F,2,F,N,A,F,N,B,C,B,l,F,1,F,2,B,F,N,B,C,l,F,2,B,F,N,C,C,l,F,2,b,5,b,10,c,10,5,a,求轴力及画轴力图的全过程,绘制轴力图的方法总结,确定约束力;,根据杆件上作用的,外载,以及,约束力,,确定,控制面,,也就是,轴力图的分段点,;,应用,截面法,,用假想截面从控制面处将杆件截开,在截开的截面上,,画出未知轴力,并假设为正方向,;对截开的部分杆件建立,平衡方程,,确定,控制面上的轴力,建立,F,N,x,坐标系,将所求得的,轴力值标在坐标系中,,画出轴力图。,例,2,图示杆的,A,、,B,、,C,、,D,点分别作用着大小为,5,P,、,8,P,、,4,P,、,P,的力,方向如图,试画出杆的轴力图。,解:求,OA,段内力,F,N1,:设置截面如图,A,B,C,D,P,A,P,B,P,C,P,D,O,A,B,C,D,P,A,P,B,P,C,P,D,N,1,截面法 轴力及轴力图,同理,求得,AB,、,BC,、,CD,段内力分别为:,F,N2,=,3,PF,N3,=,5,P,F,N4,=P,轴力图如右图,B,C,D,P,B,P,C,P,D,N,2,C,D,P,C,P,D,N,3,D,P,D,N,4,F,N,x,2,P,3,P,5,P,P,+,+,截面法 轴力及轴力图,+,轴力,(,图,),的简便求法:,自左向右,轴力图的特点:突变值,=,集中载荷,遇到向左的,F,,,轴力,F,N,增量为正;,遇到向右的,F,,,轴力,F,N,增量为负。,5kN,8kN,3kN,+,3kN,5kN,8kN,截面法 轴力及轴力图,课堂练习,1,:,轴向均布力作用下杆件的轴力图。,第二章 轴向拉伸和压缩,A,B,q,l,F,N,x,O,+,课堂练习,2,:,试画杆件的轴力图,有轴向均布力。,A,B,C,q,l,l,F,N,x,O,+,解:,x,坐标向右为正,坐标原点在,自由端。,取左侧,x,段为对象,内力,F,N,(,x,),为:,q,k,L,x,O,思考,图示杆长为,L,,,受分布力,q,=,kx,作用,方向如图,试画出,杆的轴力图。,L,q,(,x,),F,N,(,x,),x,q,(,x,),F,N,x,O,截面法 轴力及轴力图,
展开阅读全文