欧洲建筑防火规范(Introduction_to_Eurocode_Structural_Fire_Engineering)

上传人:痛*** 文档编号:243912665 上传时间:2024-10-01 格式:PPT 页数:32 大小:625KB
返回 下载 相关 举报
欧洲建筑防火规范(Introduction_to_Eurocode_Structural_Fire_Engineering)_第1页
第1页 / 共32页
欧洲建筑防火规范(Introduction_to_Eurocode_Structural_Fire_Engineering)_第2页
第2页 / 共32页
欧洲建筑防火规范(Introduction_to_Eurocode_Structural_Fire_Engineering)_第3页
第3页 / 共32页
点击查看更多>>
资源描述
Click to edit Master title style,*,EC4,Introduction to Eurocode Structural Fire Engineering,Structural Steelwork Eurocodes,1,Strain (%),0.5,1.0,1.5,2.0,Stress (N/mm,2,),0,300,250,200,150,100,50,20C,200C,300C,400C,500C,600C,700C,800C,Steel softens progressively from 100-200C up.,Only 23% of ambient-temperature strength remains at 700C.,At 800C strength reduced to 11% and at 900C to 6%.,Melts at about 1500C.,Steel stress-strain curves at high temperatures,2,1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0,1,2,3,4,1000C,800C,20C,200C,400C,600C,Strain (%),Normalised,stress,Concrete also loses strength and stiffness from 100C upwards.,Does not regain strength on cooling.,High temperature properties depend mainly on aggregate type used.,Concrete stress-strain curves at high temperatures,3,The fire triangle,Fuel + Oxidant = Combustion products,CH,4,+ O,2,= CO,2,+ 2H,2,0,Reaction occurs when Oxygen/fuel mixture hot enough,Heat,Oxygen,Fuel,4,Stages of a natural fire - and the standard fire test curve,Cooling .,ISO834 standard fire curve,Ignition -,Smouldering,Pre-Flashover,Heating,Post-Flashover,1000-1200C,Natural fire curve,Time,Temperature,Flashover,5,The EC1 (ISO834) standard fire curve,300,100,200,0,400,500,600,700,800,900,1000,0,600,1200,1800,2400,3000,3600,Time (sec),Gas Temperature (C),576,675,739,781,842,945,6,200,400,600,800,1000,1200,0,1200,2400,3600,Time (sec),Gas Temperature (C),Typical EC1 Parametric fire curve,External Fire,Standard Fire,Hydrocarbon Fire,Fire resistance times based on standard furnace tests - NOT on survival in real fires.,EC1 Parametric Fire temperature-time curves. Based on fire load and compartment properties (500m,2,). Only allowed with calculation models.,Different EC1,time-temperature curves,7,Compartment,Temperature,Load-bearing resistance,Time,Time,Fire severity time equivalent,Used to rate fire severity or element performance relative to furnace test.,Matches times to given temperature in a natural fire and in Standard Fire.,Fire resistance time equivalent,Standard fire,Natural fire,Element,Time-equivalence,8,Furnace tests on structural elements,Fire Testing,Load kept constant, fire temperature increased using Standard Fire curve.,Maximum deflection criterion for fire resistance of beams.,Load capacity criterion for fire resistance of columns.,Problems,Limited range of spans feasible, simply supported beams only.,Effects of continuity ignored. Beams fail by “run-away”.,Restraint to thermal expansion by surrounding structure ignored.,9,Standard fire resistance furnace test,100,200,300,0,1200,2400,3600,Time (sec),Deflection (mm),10,Standard fire resistance furnace test,100,200,300,0,1200,2400,3600,Time (sec),Deflection (mm),Span,2,/400d,If rate ,t,fi,.,requ,Load resistance:,R,fi,.d.t,E,fi,.d.t,Temperature:,cr.d,d,Usually only,directly,feasible using advanced calculation models.,Feasible by hand calculation. Find reduced resistance at design temperature.,Most usual simple EC3 method. Find critical temperature for loading, compare with design temperature.,18,Material properties,Steel,Mechanical,(,effective yield strength,elastic modulus, . ),Concrete,Thermal,(,thermal expansion,thermal conductivity,specific heat,),Mechanical,(,compressive strength,secant modulus, . ),Thermal,(,thermal expansion,thermal conductivity,specific heat,),19,Strength/stiffness reduction factors for elastic modulus and yield strength (2% strain).,Strain (%),0.5,1.0,1.5,2.0,Stress (N/mm,2,),0,300,250,200,150,100,50,20C,200C,300C,400C,500C,600C,700C,800C,Elastic modulus at 600C reduced by about 70%.,Yield strength at 600C reduced by over 50%.,Steel stress-strain curves at high temperatures,20,Rft,Degradation of steel strength and stiffness,0,300,600,900,1200,100,80,60,40,20,% of normal value,Temperature (C),Rft,Effective yield strength,(at 2% strain),SS,Elastic modulus,SS,Strength and stiffness reductions very similar for S235, S275, S355 structural steels and hot-rolled reinforcing bars.,(SS),Cold-worked reinforcing bars S500 deteriorate more rapidly.,(,Rft,),21,100,50,0,200,400,600,800,1000,1200,Temperature (C),6,5,4,3,2,1,Strain (%),Strength (% of normal),Strain at maximum,strength,Degradation of concrete strength and stiffness,Normal-weight Concrete,Accurate for normal density concrete with siliceous aggregates.,Conservative for normal density concrete with calcareous aggregates,.,Lightweight Concrete,Conservative for light-weight,concretes,. All types treated the same.,Strength reduction factors,22,C,oncrete,strength,in heating and cooling,Stress,-,strain relationship in cooling from 700C (at 400,C),Stress,-,strain relationship in heating phase (700,C),5,15,25,0,01,0,02,0,03,Stress,-,strain relationship at ambient temperature,Stress,-,strain relationship in heating phase (400,C),Stress,-,strain relationship after cooling from 700C (at 20,C),23,Thermal expansion of steel and concrete,0,0,5,1,0,1,5,2,0,2,5,3,0,3,5,4,0,4,5,100,200,300,400,500,600,700,800,900,Temperature (C),Expansion,Coeff,/C (x 10,-6,),Steel,Steel thermal expansion stops during crystal,structrure,change in the 700-800C range.,Normal-weight,concrete,Concrete unlikely to reach 700C in time of a building fire.,Lightweight concrete,Light-weight concrete treated as having uniform thermal expansion coefficient.,24,l,a,=45W/mK (EC3 simple calculation model),Thermal conductivity (W/mK),10,20,30,40,50,60,0,200,400,600,800,1000,1200,Temperature (C),Steel,c,a,=600J/kgK,(EC3 simple calculation model),Other steel thermal properties,Specific Heat (J/kgK),5000,0,200,400,600,800,1000,1200,Temperature (C),4000,3000,2000,1000,Steel,25,Other,concrete,thermal properties,NC,LC,NC,LC,May assume constant value for NC:,1,60 W/m.K,May assume constant value for NC:,1000 J/kg.K,c,c,*,Specific heat c,c,(J/kg.K),400,800,1000,1200,200,600,1000 C,Thermal conductivity,l,c,(W/m.K),200,600,1000 C,1,2,3,26,Thermal analysis,Thermal analysis:,both EC3 Part 1.2 and EC4 Part 1.2,unprotected and protected steel beams,Lower and upper flanges,Considerably different temperatures,proper calculation of temperatures,!,Temp,erature,27,Temperature increase of unprotected steel,Temperature increase in time step,D,t,:,Heat flux,h,net,.d,has 2 parts:,Radiation:,Convection:,Steel temperature,Steel,Fire temperature,28,Section factor A,m,/V - unprotected steel members,perimeter,c/s area,exposed perimeter,c/s area,h,b,2(b+h),c/s area,90%,!,29,Temperature increase of protected steel,Steel temperature,Steel,Protection,Fire temperature,d,p,Some heat stored in protection layer.,Heat stored in protection layer relative to heat stored in steel,Temperature rise of steel in time increment,D,t,30,exposed perimeter,Total c/s area,exposed plate,Total c/s area,exposed flange,Total c/s area,Section factor A,m,/V - inherently protected systems,31,Section factor,A,p,/V - protected steel members,Steel perimeter,steel c/s area,h,b,2(b+h,),c/s area,inner perimeter of board,steel c/s area,90%,!,32,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!