资源描述
请将下面证明中每一步的理由填在括号内,.,已知:如图,,D,,,E,,,F,分别是,BC,,,CA,,,AB,上的点,,DE,BA,,,DF,CA,.,求证:,FDE,=,A,.,证明:,DE,BA,(),,,FDE,=,BFD,(),,,DF,CA,(),,,1.,已知,两直线平行,内错角相等,已知,BFD,=,A,(),,,FDE,=,A,().,两直线平行,同位角相等,等量代换,已知:如图,,AD,CB,,,AD,=,CB,.,求证:,ABC,CDA,.,2.,证明:,AD,CB,,,AC,B,=,CAD,.,CB,=,AD,,,CA,=,AC,,,ABC,CDA,(SAS).,已知:如图,在,ABC,中,,AB,=,AC,,,点,D,,,E,分别在边,AC,,,AB,上,且,ABD,=,ACE,,,BD,与,CE,相交于点,O,.,求证:,(1),OB,=,OC,;,3.,证明:,(1),AB,=,AC,,,ABC,=,ACB,.,ABD,=,ACE,,,ABC,ABD,=,ACB,ACE,,,DBC,=,ECB,,即,OBC,=,OCB,.,OB,=,OC,(,等角对等边,),.,(2),BE,=,CD,;,(2),在,ABD,和,ACE,中,,A,=,A,,,AB,=,AC,,,ABD,=,ACE,,,ABD,ACE,(,ASA,),,,AD,=,AE,.,AB,=,AC,,,AB,AE,=,AC,AD,,即,BE,=,CD,.,已知:如图,,BD,,,CE,是,ABC,的高,且,BD,=,CE,.,求证:,ABC,是等腰三角形,.,4.,证明:,BD,,,CE,是,ABC,的高,,BDC=CEB=90,.,又,BD,=,CE,,,BC,=,CB,,,Rt,BCD,Rt,CBE,(,HL,),,,ABC,=,ACB,.,AB=AC,,即,ABC,是等腰三角形.,在,ABC,中,已知,A,,,B,,,C,的度数之比是,1,2,3,,,AB,=,,求,AC,的长,.,5.,解:,A,+,B,+,C,=180,,,A,B,C,=1,2,3,,A,=30,,,C,=90,.,在Rt,ABC,中,,A,=30,,,BC,=,已知:如图,,AN,OB,,,BM,OA,,垂足分别为,N,,,M,,,OM=ON,,,BM,与,AN,相交于点,P.,求证:,PM=PN.,6.,证明:如图,连接,OP,.,AN,OB,,,BM,OA,,,P,M,O,=,P,N,O,=90.,在Rt,P,M,O,与Rt,P,N,O,中,,OP,=,OP,,,OM,=,ON,,,Rt,P,M,O,Rt,P,N,O,(,HL,),.,PM,=,PN,.,已知:,MN,是线段,AB,的垂直平分线,,C,,,D,是,MN,上的两点,.,求证:,(1),ABC,,,ABD,是等腰三角形;,7.,证明:,(1),如图,,C,是线段,AB,的垂直平分线上的点,,AC,=,BC,.,ABC,是等腰三角形.,同理可证,ABD,是等腰三角形.,(2),CAD,=,CBD,.,(2),如图,点,C,,,D,在线段AB所在直线的两侧.,AC,=,BC,,,CAB,=,CBA,.,AD,=,BD,,,DAB,=,DBA,.,CAB,+,DAB,=,CBA,+,DBA,,即,CAD,=,CBD,.,点,C,,,D,在线段,AB,所在直线的同侧,利用同样的方法推理可得,CAD,=,CBD,.,如图,已知线段,a,,利用尺规求作以,a,为底边、以,2,a,为高的等腰三角形,.,8.,已知:线段,a,,,如图,(1),.,求作:等腰,ABC,,使得,AB,=,AC,,,BC,=,a,,,BC,边上的高,AD,=2,a,.,作法:如图,(2),.,(1),作射线,BM,,在,BM,上截取线段,BC,=,a,;,(2),作线段,BC,的垂直平分线,DE,交,BC,于点,D,;,(3),在射线,DE,上截取,DA,=2,a,;,(4),连接,AB,,,AC,,则,ABC,即为所求.,如图,在,ABC,中,,BAC,=90,,,AB,=,AC,=,a,,,AD,是,ABC,的高,求,AD,的长,.,9.,解:在,ABC,中,,BAC,=90,,,AB,=,AC,=,a,,由勾股定理得,BC,=.,又,S,ABC,=,AB,AC,=BC,A,D,,即,AD,=.,解:Rt,AOD,Rt,AOE,.,证明:,ABC,的,高,BD,与,CE,相交于点,O,,,ADO,=,AEO,=90.,OD,=,OE,,,AO,=,AO,,,Rt,AOD,Rt,AOE,(,HL,),.,如图,,ABC,的高,BD,与,CE,相交于点,O,,,OD,=,OE,,,AO,的延长线交,BC,于点,M,,请你从图中找出几对全等的直角三角形,并给出证明,.,10.,Rt,BOE,Rt,COD,.,证明:由知,BEO,=,CDO,=90,,又,OE,=,OD,,且,BOE,=,COD,,,BOE,COD,(,ASA,),.,Rt,BCE,Rt,CBD,.,证明:由知,BEC,=,CDB,=90,,BE,=,CD,,且,BC,=,CB,,,Rt,BCE,Rt,CBD,(,HL,),.,ABM,ACM,.,证明:由知,ABC,=,ACB,,由知,BAM,=,CAM,,,又,AM=AM,,,ABM,ACM,(,AAS,),.,Rt,ABD,Rt,ACE,.,证明:,ADB,=,AEC,=90,,BAD,=,CAE,,又由知,A,D,=,A,E,,,Rt,ABD,Rt,ACE,(,ASA,),.,BOM,COM,.,证明:由知,OMB,=,OMC,,,B,M,=,C,M,,,又,OM,=,OM,.,BOM,COM,(S,AS,),.,AOB,AOC,.,证明:,由知,OB,=,OC,,,由知,AB,=,AC,,,又,O,A,=,O,A,.,AOB,AOC,(SS,S,),.,证明:如图,连接,BE,.,DE,垂直平分,AB,,,AE,=,BE,.,ABE,=,A,=30.,C,=90,,A,=30,,ABC,=60.,EBC,=,ABC,ABE,=30.,BE,=2,CE,.,AE,=2,CE,.,如图,在,ABC,中,,C,=90,,,A,=30,,,AB,的垂直平分线分别交,AB,,,AC,于点,D,,,E,.,求证:,AE,=2,CE,.,11.,解:,C,=,BED,=90,,,B,=60,,,A,=30,.,又,AED,=180,BED=,90,,,AD,=2,DE,=2.,AC,=,AD,+,CD,=4.,如图,四边形,BCDE,中,,C,=,BED,=90,,,B,=60,,延长,CD,,,BE,,两线相交于点,A,.,已知,CD,=2,,,DE,=1,,求,Rt,ABC,的面积,.,12.,在,Rt,ABC,中,,A,=30,,,AB,=2,BC,.,又,AB,2,=,BC,2,+,AC,2,,即,4,BC,2,=,BC,2,+4,2,,,解得,BC,=,S,ABC,=,解:此题答案不唯一.可添加条件:,CAB,=,DBA,或,CBA,=,DAB,或,AC,=,BD,或,BC,=,AD,.,如图,已知,ACB,=,BDA,=90,,要使,ACB,BDA,,还需要添加什么条件?请你选择其中一个加以证明,.,13.,选择添加条件,AC,=,BD,加以证明.,证明:在Rt,ACB,和Rt,BDA,中,,AC,=,BD,,,AB,=,BA,,,Rt,ACB,Rt,BDA,(,HL,),.,已知:在,ABC,中,,AB,=,AC,.,求证:,B,与,C,都是锐角.,证明:,AB,=,AC,,,B,=,C,.,假设,B,与,C,为直角或钝角,于是,B,+,C,180,,这与三角形内角和定理矛盾,因此,B,和,C,必为锐角.即等腰三角形的底角必为锐角.,求证:等腰三角形的底角必为锐角,.,14.,解:,AFD,是直角三角形.理由如下:,AB,=,AD,,,ADB,=,B,=64,.,BAD,=180,ADB,B,=180,64,64,=52,.,如图,在,ABC,中,,B,=64,,,BAC,=72,,,D,为,BC,上一点,,DE,交,AC,于点,F,,且,AB,=,AD,=,DE,,连接,AE,,,E,=55,.,请判断,AFD,的形状,并说明理由,.,15.,BAC,=72,,,DAC,=,BAC,BAD,=72,52,=20,.,AD,=,DE,,,E,=55,,,DAE,=,E,=55,.,FAE,=,DAE,DAC,=35,.,AFD,=,FAE,+,E,=35,+55,=90,.,AFD,是直角三角形.,如图,在,ABC,中,,AB,=,AC,,,AB,的垂直平分线交,AB,于点,D,,交,AC,于点,E,.,已知,BCE,的周长为,8,,,AC,BC,=2,,求,AB,与,BC,的长,.,16.,解:,DE,垂直平分,AB,,,AE,=,BE,.,又,BCE,的周长=,BE,+,EC,+,BC,=,AE,+,EC,+,BC,=,AC,+,BC,=8.,AC,BC,=2,得方程组,AB=AC,,,AB,=5.,已知:如图,在等边三角形,ABC,的三边上分别取点,D,,,E,,,F,,使得,AD,=,BE,=,CF,.,求证:,DEF,是等边三角形,.,17.,证明:在等边三角形,ABC,中,,AB,=,BC,=,AC,,,A,=,B,=,C,.,AD,=,BE,=,CF,,,AB,AD,=,BC,BE,=,AC,CF,,,即,DB,=,EC,=,FA,.,在,BDE,和,CEF,中,,DB,=,EC,,,B,=,C,,,BE,=,CF,,,BDE,CEF,(,SAS,),.,DE,=,EF,.,同理可证,AFD,CEF,(SAS),,FD,=,EF,.,DE=EF=FD,.,DEF,是等边三角形.,如图,已知线段,c,,求作等腰直角三角形,使其斜边等于线段,c,(,保留作图痕迹,不必写作法,).,18.,解:作图如图所示,,ABC,即为所求作的等腰直角三角形,.,解:如图,在等腰,ABC,中,,AB,=,AC,=5,,BC,=6,,,过点,A,作,AD,BC,交,BC,于点,D,,,则,BD,=,BC,=3.,在Rt,ABD,中,由勾股定理得,AD,=,AB,BD,=53=16,,AD,=4.,已知等腰三角形底边和腰的长分别为,6,和,5,,求这个等腰三角形的面积,.,19.,S,ABC,=,BC,AD,=64=12.,
展开阅读全文