资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,1,5.4,醇的氧化,5.4.1,用二甲亚砜氧化,5.4.2,用铬试剂氧化,5.4.3,用高价碘化物氧化,5.4.4,催化氧化,(选讲),2,5.4.1,用二甲亚砜氧化,二甲亚砜可与各种亲电试剂反应生成活性锍盐,(sulfonium salt),活性锍盐与醇反应生成烷氧基锍盐,烷氧基锍盐发生消除,生成醛或酮,3,二甲亚砜氧化醇为醛、酮的过程,4,解释二甲亚砜氧原子的亲核性,前几章是否碰到过二甲亚砜作为亲核试剂的反应,5,用二甲亚砜氧化的典型反应,Pfitzner-Moffatt(,普菲茨纳,-,莫法特,),氧化, 1963,Albright-Goldman,氧化,,1965,Parikh-Doering,(帕瑞克,-,多林)氧化,,1967,Swern,(斯文)氧化,,1978,这些氧化反应的区别在哪里?,6,7,Swern,氧化,1976,年,,D Swern,发现,TFAA,能在,50,下活化,DMSO,氧化醇为醛酮,1978,年又发现,草酰氯作为活化剂较,TFAA,更有效,8,Swern,氧化的机理(,TFAA,活化),为什么,DMSO,不能一步取代三氟乙酸根离子?,9,Swern,氧化的机理(,TFAA,活化,续),讨论中间体内鎓盐结构,10,中间体的,Pummerer,重排,11,Swern,氧化的机理(草酰氯活化),12,Swern,氧化的机理(草酰氯活化,续),13,Swern,氧化的特点,无溶剂易爆炸,!,常在二氯甲烷中反应,低温反应(,78,),DMSO,与草酰氯的起始加成物在,60,以上不稳定,TFAA,作活化剂 ,30,以上会发生,Pummerer,重排,14,Swern,氧化法的改进,Xun He and Tak Hang Chan. New non-volatile,and odorless organosulfur compounds anchored,on ionic liquids. Recyclable reagents for Swern,Oxidation. Tetrahedron, 2006 62 (14): 33893394,二甲亚砜,二甲硫醚有恶臭,成本高,以下文献提出将亚砜负载在离子液体上,无恶臭,可循环使用,15,a: n =1,b: n=2,c: n=5,16,Swern,氧化合成,vapiprost,伐哌前列素:抗血小板凝聚,17,Daniel Lednicer. Strategies for organic drug,synthesis and design, p16, New York:John Wiley &,Sons, Inc, 1998,参考文献,18,19,Swern,氧化合成,(+)-asteltoxin,A mycotoxin,,毒枝菌素,20,Eom, K. D., Raman, J. V., Kim, H., Cha, J. K.,Total Synthesis of (+)-Asteltoxin.,J. Am. Chem.,Soc.,2003, 125(18): 5415-5421.,参考文献,21,22,23,24,Pfitzner-Moffatt,氧化,反应通式,25,Pfitzner-Moffatt,氧化反应特点,DMSO,的活化剂,DCC,需过量(,3,倍以上),后处理时加草酸可除去过量的,DCC,反应必须有中等强度的酸催化,如,H,3,PO,4,二氯乙酸,强酸吡啶盐等,强酸对反应有阻碍作用,副产物二环己基脲较难除去,用水溶性的碳二亚胺,替代,DCC,可克服这一问题,26,Pfitzner-Moffatt,氧化机理,DMSO,的活化,27,Pfitzner-Moffatt,氧化机理(续),28,Pfitzner-Moffatt,氧化机理(续),29,Pfitzner-Moffatt,氧化反应操作,将二环己基碳二亚胺(,DCC),溶于,DMSO,中,然后,加入醇和催化酸,(,磷酸,三氟乙酸,吡啶,-,磷酸等),进行反应,30,Pfitzner-Moffatt,氧化反应实例,31,5.4.2,用铬试剂氧化,典型反应:,Jones,氧化,1946,年,,E R H Jones,发现三氧化铬与稀硫酸的溶液可将伯醇氧化成羧酸,仲醇氧化成酮,32,Jones oxidation, 1946,33,Jones,氧化的机理,稀溶液中铬酸以单体,H,2,CrO,4,存在,浓溶液中铬酸以二聚体,H,2,Cr,2,O,7,存在,反应中醇先与铬酸形成铬酸酯,再脱氢生成产物,动力学同位素效应测定表明脱氢是速率控制步骤,34,碱促进分子间脱氢机理,35,无碱促进分子内脱氢机理,36,Jones,试剂的制备和氧化操作,Jones,试剂的制备实例,Jones,氧化操作,将,26.7g CrO,3,溶于,23mL,浓硫酸中,加水稀释到,100mL,020,o,C,往醇的丙酮溶液中滴加,Jones,试剂,37,Jones,试剂氧化仲醇的实例,38,Jones,氧化合成,石斛碱,石斛碱, (-)-dendrobine,39,参考文献,Sha, C.-K., Chiu, R.-T., Yang, C.-F., Yao, N.-T., Tseng, W.-H., Liao, F.-L., Wang, S.-L. Total Synthesis of (-)-Dendrobine via -Carbonyl,Radical Cyclization.,J. Am. Chem. Soc.,1997, 119, 4130-4135.,40,41,Staudinger,反应,,1919,42,Staudinger,反应产物的转化,43,G,eneral features of,Jones oxidation,The oxidation is usually carried out in acetone, which serves a dual purpose,It reacts with any excess oxidant so it protects the,product from overoxidation,It dissolves most organic substrates, and,44,Primary alcohols are converted to carboxylic acids with the intermediacy of aldehydes,Aldehydes can be isolated by distillation sometimes if the aldehyde is volatile,45,Allylic and benzylic alcohols are efficiently oxidized to the corresponding aldehydes with little or no over-oxidation,Isolated double and triple bonds remain unchanged,but,-unsaturated aldehyde products may undergo double bond isomerization,46,For particularly acid sensitive or otherwise delicate substrates the use of the strongly acidic,Jones reagent,is clearly not the best method of oxidation,47,Jones,氧化的改进,Collins,试剂氧化(,Sarett and Collins, 19531968),制备,CrO,3,吡啶络合物,CrO,3,(pyridine),2,(Collines,试剂)在二氯甲烷中氧化,48,Collines,试剂氧化实例,可氧化伯醇为醛,49,PCC,和,PDC,氧化(,Corey, 1975 and 1979),PCC,:氯铬酸吡啶鎓盐(弱酸性),PDC,:重铬酸吡啶鎓盐(中性),50,氧化铝负载,PCC,的制备,2.5 g (25 mmol) CrO,3,溶于,5 mL 6 mol/L,的盐酸中,,0,,,5 min,内加入,2.0 g (25 mmol),吡啶。,待析出桔黄色,PCC,结晶后升温至,40,使结晶溶解,搅拌下加入,20.8 g Al,2,O,3,,减压除水,,100,干燥得负载氧化剂,PCC/ Al,2,O,3,。,51,PCC,氧化苄醇的实例,52,PFC,氧化仲醇的实例,PFC,:氟铬酸吡啶鎓盐,53,Jones,试剂与,Collines,试剂、,PCC,、,PDC,的比较,对伯醇的氧化,Jones,氧化:产物往往为羧酸,54,Collines,试剂与,PCC,、,PDC,的比较,Collines,试剂:不稳定,易吸潮,难保存,要求无水,条件,试剂要过量(,5,倍量以上),PCC,,,PDC,:不吸潮,易保存,使用广泛,55,PCC,与,PDC,的比较,PCC,:呈弱酸性,氧化对酸不稳定的化合物,可,加入,NaOAc,;使用载体可避免生成黑褐色胶状物,PDC,:可在中性条件下起反应,在,DMF,或,DMSO,中,氧化能力强,会生成羧酸,56,不同条件下,PCC,和,PDC,氧化伯醇的实例,57,5.4.3,用高价碘化物氧化,(Dess-Martin,氧化,),1893,年,发现,IBX,IBX,几乎不溶于任何有机溶剂,应用受到限制,58,1983,年,,D B Dess,和,J C Martin,由,IBX,的酰化合成了能溶于多种有溶剂的,DMP,59,以,DMP,为氧化剂的氧化就称作,Dess-Martin,氧化,DMP,可将醇和肟氧化成醛或酮,60,Dess-Martin,氧化的机理,61,Dess-Martin,氧化的特点,Mild reaction conditions (room temperature,neutral pH),2) High chemoselectivity,3) Tolerance of sensitive functional groups on,complex substrates,4) Long shelf-life and thermal stability (unlike,IBX, which has been found to be explosive),62,Dess-Martin,氧化合成,ustiloxin D,Ustiloxin:,黑粉菌毒素,63,Cao B, Park H, Joullie M M. Total Synthesis of,Ustiloxin D.,J. Am. Chem. Soc.,2002, 124(4): 520-,521,参考文献,64,65,DEPBT(BDP),缩合机理,66,67,5.4.4,催化氧化,化学计量氧化剂氧化存在的主要问题,氧化剂消耗大,成本高,产生大量副产物,对环境危害大,68,(2),钌催化氧化,(1),铜催化氧化,(3),钯催化氧化,(4),无过渡金属催化氧化,69,(1),铜催化氧化,CuCl/TEMPO,体系催化醇的氧化,CuCl/Phen/DBADH,2,/K,2,CO,3,体系催化醇氧化,70,CuCl/TEMPO,体系催化醇的氧化,1974,年,Cella,偶然发现,TEMPO,可将醇氧化为醛酮,Cella,用间氯过氧苯甲酸,(,m,CPBA),氧化四甲基哌啶醇,制氮氧化物,发现羟基被氧化成酮,71,m,CPBA,不具备将羟基氧化成酮的活性,酮是如何生成的?,72,73,Cella J A,,,Kelley J A,,,Kenehan E F.,J Chem Soc, Chem. Commun,.,1974,943,参考文献,74,提出,TEMPO,催化氧化法,75,76,Cella J A, Kelley J A, Kenehan E F. J Org Chem, 1975, 40, 1860,Ganem B. J Org Chem. 1975, 40,1998,77,1984,年,M. F. Semmelhack,提出,CuCl-TEMPO,催化分子氧氧化醇的方法,Semmelhack M F, Schmid C R, Corts D A,et al,.,J Am.Chem. Soc, 1984,106:3374,78,2002,年,R Gree,等在离子液体中实现了该氧化反应,I A. Ansari, R Gree.,Org. Lett.,J, 2002,4(9):1507,79,80,81,以离子液体固定化的,TEMPO,作催化剂,实现了离子,液体和催化剂的循环使用,82,离子液体固定化,TEMPO,催化氧化醇的结果,83,84,离子液体和催化剂循环使用结果,85,可能的机理,86,CuCl/Phen/DBADH,2,/K,2,CO,3,体系催化醇氧化,1996,年,,Marko,等在,Science,上报道了,CuCl/Phen/,DBADH,2,/K,2,CO,3,体系,能在温和条件下将伯醇、,仲醇、烯丙醇和苄醇氧化成相应的醛、酮,收率高,Phen,:,1,10-,菲咯啉,,DBADH,2,:肼二甲酸二叔丁酯,87,CuCl/Phen/DBADH,2,/K,2,CO,3,体系催化醇氧化通式,CuCl/Phen/DBADH,2,的用量为底物量的,5 mol%,88,Marko I. E.; Giles P. R.; Tsukazaki M.; Brown S.,M.; Urch C. J., Copper-catalyzed oxidation of,alcohols to aldehydes and ketones: An efficient,aerobic alternative.,Science,1996, 274 (5295):,2044-2046,参考文献,89,CuCl/Phen/DBADH,2,体系催化氧化醇的机理,90,(2),钌催化氧化,TPAP(Pr,4,N,+,RuO,4,),/NMO,体系:,Ley,氧化,Ru(PPh,3,),3,Cl,2,/TEMPO/O,2,体系,91,过钌酸四异丙基铵盐,TPAP(Pr,4,N,+,RuO4,),催化氧化,NMO,= N-methylmorpholine N-oxide,Ley,氧化,,1987,92,Ley,氧化的条件,TPAP,用量:,5%(,相对于被氧化物),共氧化剂:双氧水或,N-,甲基吗啉氧化物,NMO,溶剂:,CH,2,Cl,2, CH,3,CN,等,助催化剂:分子筛,93,Ley,氧化的机理,94,TPAP,的制备,将,RuCl,4,nH,2,O,加入到过量的溴酸钠,(NaBrO,3,),的,1mol/L,的碳酸钠水溶液中,氧化成,RuO,4,,接着加入,Pr,4,NOH,,即会产生深绿色的,TPAP,晶体,95,Ley,氧化合成,pironetin,农用抗生素,作物防倒伏剂,96,参考文献,Keck G E, Knutson C E, Wiles S A. Total,Synthesis of the Immunosuppressant (-)-Pironetin,(PA48153C).,Org. Lett.,2001, 3,:,707-710,97,98,99,Ru(PPh,3,),3,Cl,2,/TEMPO/,体系催化醇氧化,以分子氧为最终氧化剂,100,Ru(PPh,3,),3,Cl,2,/TEMPO/,体系催化醇氧化的机理,101,(3),钯催化体系,PdX,2,/ Ligand,体系,碱和,3A,分子筛通常对反应有促进作用,X = OAc, Cl,2,等,102,钯催化体系常用配体,103,Pd(OAc),2,/ DMSO,体系,Karl P P, Richard C L. Palladium-Catalyzed,Oxidation of Primary and Secondary Allylic and Benzylic Alcohols. J. Org. Chem. 1998, 63: 3185-3189,104,Nishimura T, Onoue T, Uemura S. Palladium(II)-,Catalyzed Oxidation of Alcohols to Aldehydes and,Ketones by Molecular Oxygen. J Org Chem,1999, 64: 6750-6755,Pd(OAc),2,/ pyridine,体系,105,钯催化醇的氧气氧化反应机理,106,(4),无过渡金属催化氧化,TEMPO/Br,2,/NaNO,2,/air,体系,PhI(O,2,CF,3,),2,/TEMPO/K,2,S,2,O,8,体系,
展开阅读全文