遥感教案5第五章遥感图像的几何处理

上传人:kfc****89 文档编号:243528190 上传时间:2024-09-25 格式:PPT 页数:51 大小:643KB
返回 下载 相关 举报
遥感教案5第五章遥感图像的几何处理_第1页
第1页 / 共51页
遥感教案5第五章遥感图像的几何处理_第2页
第2页 / 共51页
遥感教案5第五章遥感图像的几何处理_第3页
第3页 / 共51页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第五章 遥感图像的几何处理,一遥感图像通用构像方程,传感器坐标系,像点坐标系,地面坐标系,设地面点P在地面坐标系中的坐标为X Y ZP,P在传感器坐标系中的坐标为U V WP,传感器投影中心S在地面坐标系中的坐标为X Y ZS,传感器的姿态角为 ),那么通用的构像方程为:,式中,A为传感器坐标系相对于地面坐标系的旋转矩阵,是传感器姿态角的函数。,A=,其中,二 中心投影构像方程,根据中心投影的特点,图像坐标x,y,-f和传感器系统坐标,之间有如下关系,:,其中:,为成像比例尺分母,,为摄影机主距,所以中心投影像片坐标与地面点大地坐标的关系构像方程为,其正算公式:,其反算公式:,以上是中心投影的构像方程,下面我们看看多中心投影的构像方程,三全景摄影机的构像方程,其中,四 推扫式传感器的构像方程,在时刻T时像点P的坐标为0,y,-f,因此推扫式传感器的构像方程为:,或,当推扫式传感器沿卫星轨道方向旁向倾斜固定角时,,当推扫式传感器阵列在其卫星轨道方向内向前或向后倾斜角为 时,五 扫描式传感器的构像方程,任意一个像元的构像,等效于中心投影朝旁向旋转了扫描角后,以像幅中心成像的几何关系,所以扫描式传感器的构像方程为:,其中:,5.2 遥感图像的几何变形,一 传感器成像方式引起的图像变形,:传感器的成像方式有中心投影,全景投影,斜距投影,以及平行投影,由于中心投影在垂直摄影和地面平坦的情况下,地面物体与其景物具有相似性,不存在由成像方式造成的图像变形,因此把中心投影的图像作为基准图像来讨论其他方式投影图像的变形规律。,1全景投影变形,全景投影的影像面不是一个平面,而是一个圆柱面,为焦距,,为成像角,,0,/rad,2 斜距投影变形,侧视雷达属于斜距投影变形,S为雷达天线,S,y,为雷达成像面,地物点P在斜距投影图像上的图像坐标为y,p,H为航高,所以斜距投影图像上的影像坐标为,而地面上P点在等效中心投影图像oy上的像点P为,y,p,=,变形误差为:,传感器外方位元素,是指传感器成像时的位置(X,S,Y,S,Z,S,)和姿态角,(,由地物点图像的坐标误差来表达,并可以通过传感器的构像方程推出.,二 传感器外方位元素变化的影响,三,地形,起伏引起的像点位移,投影误差是由地面起伏引起的像点位移,当地形有起伏时,对于高于或低于某一基准面的地面点,其在像片上的像点与其在基准面上垂直投影点在像片上的构像点之间有直线位移。如下图。,四 地球曲率引起的图像变形,地球曲率引起的像点位移与地形起伏引起的像点位移类似。只要把地球外表(把地球外表看成球面)上的点到地球切平面的正射投影距离看做是一种系统的地形起伏,就可以利用前面介绍的像点位移公式来估计地球曲率所引起的像点位移,如下图。,五 大气折射引起的图像变形,六 地球自转的影响,思考题,1,说明遥感图像几何变形误差的主要类型,2,为什么说中心投影的构像是遥感影像构像根底?,附加知识,软件操作,1数据的输入和输出,2视窗操作,2图像的裁剪和拼接,遥感作为空间数据,具有空间地理位置的概念。当遥感图像在几何位置上发生了变化,产生行列不均匀,像元大小与地面大小对应不准确,地物形状不规那么 变化时,说明遥感影像发生了几何畸变。产生畸变的图像给定量分析及位置配准造成困难。在应用遥感图像之前,必须将其准确投影到需要的坐标系中。因此,遥感图像的几何处理是遥感信息处理过程中的重要环节。,5.3 遥感影像的几何校正,遥感数据承受后,首先由承受部门进展校正,这种校正往往根据遥感平台、地球、传感器的各种参数进展处理粗加工。,遥感图像的粗加工处理仅做系统误差的改正,即把与传感器有关的测定的校正数据带入相应的构像方程。粗加工处理对传感器内部畸变的改正很有效,但是处理后仍有很大的残差系统误差和偶然误差,而用户拿到这种产品后,由于使用的目的不同或投影及比例尺不同,仍旧进一步做几何校正几何精校正。,一 遥感图像的精加工处理,遥感图像的精校正是指消除图像中的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像的过程。它包括两个环节:一是像素坐标的变换;二是对坐标变换后的像素亮度值进展重采样。常用的纠正方法有多项式法,共线方程法,,多 项 式 法,1 根本思路,校正前的图像看起来是由行列整齐的等间距像元点组成的,但是实际上,由于某种几何畸变,图像中像元点对应的地面距离并不相等。校正后的图像也是由等间距的网格点组成的,且以地面为标准,符合某种投影的均匀分布。,2 具体步骤, 找到一种数学关系,建立变换前图像坐标X ,Y与变换后图像坐标u, v的关系,通过每一个变换后的图像像元的中心位置计算出变换前对应的图像坐标点。分析得知,整数u, v的像元点在原图像坐标系中一般不在整数X, Y点上。,计算校正后图像中每一点所对应原图中的位置X ,Y。计算时按行逐点计算,每行完毕后进展下一行计算,直到全图完毕。,计算每一点的亮度值。由于计算后的U,V多数不在原图的像元中心处,因此必须重新计算新位置的亮度值。一般来说,新点的亮度值介于邻点亮度值之间,所以常常采用内插法计算。,通常数学关系,表示为二元N次多项式,:,计算方法以多项式法为例(反解法),首先建立两图像像元点之间的对应关系,记做:,通常数学关系,表示为二元N次多项式:,实际计算中常常采用二元二次多项式,其展开式为:,为了通过,找到对应的,首先要计算出上面式的12个系数,这就需要12个方程,实际工作中发现,6个控制点是解线性方程的理论最低数,这样少的控制点较正后的图像效果差,因此在实际工作中,要增加控制点,控制点增加后计算结果有所改变,需采用最小二乘法,通过对控制点数据进展曲面拟合来求系数。如上式可变为:,1,这里,代表,,,L,为控制点的个数,将上式写成距阵形式记为:,同样以Y为主的距阵形式为:,系数确定后,利用公式1便可以根据每一个像元点的行列值,求出所对应的原图像对应的,值,。,为了确定校正后图像上每点的亮度值,只要求出其原图点,的亮度。,不在采样点,数字影像,采样函数,通常有三种方法:最近邻法、双向线性内插法、三次卷积内插法。,I。,最近邻法,图像中两相临点的距离为1,即行间距为1,列间距为1,取与所计算点x,y周围相临的4个点,比较他们与被计算点的距离,哪个点距离最近,就取哪个的亮度值作为x,y点的亮度值。设该最近邻点的坐标为K,L,那么:,K=Integer(x+0.5),L=Integer(y+0.5),式中,Integer为取整,于是点K,L的亮度值就作为点x,y的亮度值。,这种方法简单易用,计算量小,在几何精度上精度为0.5个像元,但是处理后的图像的亮度具有不连续性,从而影响了精度。,II。双线性内插法,取x,y点周围的4邻点,在方向或方向内插两次,再在或方向内插一次,得到x,y点的亮度值,该方法为双线性内插法。,设4个邻点分别为i,j,(i,j+1),i+1,j,(i+1,j+1),i代表左上角为原点的行数,j代表列数。设a=x-I,=y-j,过x,y做直线与x轴平行,与4邻点组成的边相交于点i,y和(i+1,y)。先在y方向内插,计算交点的亮度f(I,y)和f(i+1,y).,由梯形计算公式:,所以:,同理:,然后,计算X方向组成的内插值来内插,值,结果为,综合以上3个公式得:,其中,i,j的值由x,y取整;,实际计算时,先对全幅图像沿行依次计算每一个点,再沿列逐行计算,直到全部点计算完毕。双线性内插法虽然与最邻近法比起来其计算量增加,但是精度明显提高,特别是对亮度不连续现像或线状特征的块状化现像有明显的改善。但是这种内插法对图像起到平滑的作用,从而使比照度明显的分界限变的模糊。,换一个角度说明双线性插值法,卷积核是一个三角形函数,11,12,21,22,p,Y,X,y1,y2,a,b,y,1-,y,x,1-,x,x2,x1,双线性插值法示意图,双线性插值法,双线性插值法,加权平均值,III。三次卷积内插法,这是进一步提高内插精度的方法。其根本思想是增加邻点来获得最正确插值函数。,取与计算点相邻的16个点,与双线性内插类似,可先在一个方向上内插,如先,在X方向上,每4个值依次内插4次,求出,再根据这4个结果在Y方向上内插,得到f(x,y),每一组4个样点组成一个连续内插函数。可以证明,这种三次多项式内插过,程实际上是一种卷积运算,所以又叫三次卷积内插。,双三次卷积法,卷积核可以利用三次样条函数,p,11,12,13,14,21,31,41,22,23,24,32,33,34,42,43,44,Y,x,双三次卷积法示意图,y,x,双三次卷积法,次多项式控制点的最少数目为:,一般来说,控制点应选取在图像上易分辨且较精细的特征点,这很容易通过目视的方法来区分,如道路的穿插点,河流弯曲或分叉处,海岸线弯曲处等,控制点的选取要均匀,一 多图像几何配准,多图像是指同一地区不同时刻的图像,或不同遥感器获得的多种图像。,多图像的几何配准就是指将多图像的同名影像通过几何变换实现重叠,通常叫相对配准;将相对配准的多图像纳入某一地图坐标系统,通常叫绝对配准。,多项式和共线方程遥感图像数字纠正方法可以实现多图像的几何配准,例如:采用多项式纠正,一旦在多图像上选择分布均匀、足够数量的一些同名影像作为相互匹配的控制点,就可以根据控制点解求多项式系数,实现一幅图像对另一幅图像的几何校正,从而到达多图像的几何配准。但是在很多情况下,很难找到准确可靠的控制点,所以多图像的几何配准,通常都采用相关函数的原理进展自动配准。,多图像自动配准的根本原理是根据对两个图像的近似性的量度,即在两个图像的相对移动中,找出其相似性量度值最大,或差异最小的位置作为图像配准的位置。,多图像几何配准根本原理,T1,T2,T3,S1,S2,S3,参考图像,搜索图像,计算两个图像相似性量度值,可以采用不同的方法。应用较多的有:,1 图像的互相关法,两个图像之间的空间相关称为互相关。数字图像,的互相关表达式为:,为了防止由于图像中不同部位平均亮度值的差异造成的假的峰值,可以用两个图像中亮度值的平方和对进展标准化,即:,使其值最大的坐标位置就是两个图像相匹配的位置,2绝对差值法,该方法是用模块在搜索图像的搜索区内逐个像元地移动并运用下式进展计算,在搜索区内,使d(m,n)为最小值的坐标位置m,n就是Ti和Si匹配最好的位置。,二 数字图像的镶嵌,当你感兴趣的研究区域在不同的图像文件时,需要对不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,这就是图像镶嵌。通过图像镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不同时间同一传感器获得,也可以是不同时间不同传感器获得,但要求镶嵌的图像之间要有一定的重叠度。,其过程如下:,1 图像的几何纠正,2 镶嵌边搜索:选择一定范围的重叠区,确定一维模板,在重叠区内自左向右进展搜索,按一定的算法计算相关系数,确定该行的镶嵌点,逐行进展搜索镶嵌点可以得到镶嵌边。,3亮度和反差调整:求接缝点左右图像的平均亮度值,然后,对一个图像改变整幅图像基色,求出左右图像在接缝边上的灰度极值,对这个图像作反差拉伸。,4边界限的平滑:,思考题:,遥感影像几何纠正的目的是什么?,试述多项式校正法纠正卫星图像的原理和步骤。,附加知识:软件应用:几何校正的方法,图象镶嵌,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!