资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,Chapter Eight,Plant Physiology of Growth,8.1植物生长、发育和分化的概念,8.1.1生长周期:任何生物体,总是有序地经历发生、发展和死亡等过程,称为生命周期(life cycle).,1,孢子体阶段,配子体阶段,减数分裂,有丝分裂,2,8.1.2 植物生长,(growth):,在生命周期中,生物的细胞、组织和器官数目、体积或干重的不可逆增加过程。它通过原生质的增加、细胞分裂和细胞体积的扩大来实现。营养器官(根、茎、叶)的生长称为营养生长(vegetable growth);繁殖器官的生长称为生殖生长(reproductive growth)。,8.1.3植物分化,(differentiation):,从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程。如:受精卵分裂转化为胚。,8.1.4植物发育,(development):,在生命周期中,生物的组织、器官或整体在形态结构和功能上的有序变化过程。如:叶原基的分化到成熟叶片的过程。,3,8.2 细胞的生长和分化,植物的生长是以细胞的生长为基础 通过,细胞分裂,增加细胞数目,通过,细胞伸长,增加细胞的体积,通过,细胞分化,形成不同的组织和器官。,细胞的生长和分化分三个時期:,细胞分裂期、细胞伸长期、细胞分化期,4,8.2.1细胞分裂期,形态特点:,细胞体积小,排列紧密,质浓厚,无液泡,DNA大量增加。,影响细胞分裂的因素:,1、温度,:低,分裂周期延长:高,缩短。,材料 温度() 分裂周期(h),豌豆 15 25.5,30 14.39,5,2、植物激素:,GA解除DNA抑制状态和促进DNA合成,CTK促进蛋白质合成及调节细胞质分裂,IAA促进rRNA的合成,。,3、维生素:,特别是B组维生素,缺乏时,细胞不能分裂,。,4、氧气:,缺氧,影响能量供应,另外,多胺,也能促进细胞分裂,。,6,6、植物激素的变化,ABA等抑制剂下降,IAA、GA、CTK含量上升。,7,(1)细胞,体积,显著增加,(2),细胞,壁物质,合成,(3)DNA、RNA、蛋白质含量,增加。,(4)能量供应 如:豌豆根尖呼吸速率加快26倍,蚕豆转化酶增加25倍。,8.2.2细胞伸长期,呼吸作用的加强和蛋白质的积累是细胞生长的基础,。,8,9,8.2.3 细胞的分化,细胞分化(cell differentiation),:指分生组织细胞转变为,形态结构,和,生理功能,不同的细胞群的过程。分生组织细胞分化成不同的组织,是植物基因在时间和空间顺序表达的结果。,8.2.3.1细胞分化的,理论基础,细胞全能性,10,8.2.3.2 极性是分化的第一步,极性的存在使形态学上端分化出芽,下端分化出根。(如木贼孢子发芽、柳条吊挂试验)。,极性产生的原因:一是细胞不均等分裂,如根毛的发生、气孔母细胞形成等;二是IAA在茎中的极性传导,如蒲公英切段试验。,11,低糖浓度,( 3.5%),有利于,韧皮部,形成;,中糖浓度,(2.5%3.5%),,木质部、韧皮部都,形成,且中间有,形成层,。,1、糖浓度,8.2.3.3影响细胞分化的因素,12,2、植物激素,CTK/IAA比值:高,芽;低,根;中等,不分化。,乙烯也能促进根的形成,高浓度的GA则抑制根的形成。,IAA/GA比值高木质部;低韧皮部。,3、光照,13,8.3植物的组织培养(plant tissue culture),8.3.1概念:在无菌条件下,分离并在培养基中培养离体植物组织(器官、组织或细胞)的技术。组织培养的理论依据是植物细胞具有全能性。所谓细胞全能性(totiptency),是指植物体的每个细胞携带着一套完整的基因组,并具有发育成完整植株的潜在能力。,14,8.3.2组织培养的优点:可以研究被培养部分这部分称为外植体,在不受植物体其他部分干扰下的生长和分化的规律,并且可以用各种培养条件影响它们的生长和分化,以解决理论上和生产上的问题。组织培养的特点是:取材少,培养材料经济;人为控制培养条件,不受自然条件影响;生长周期短,繁殖率高;管理方便,利于自动化控制。,15,外植体 培养基 愈伤组织 胚状体或植株,接种,脱分化,再分化,8.3.3,组织培养的过程,消毒,脱分化:,原已分化的细胞,失去原有的形态和机能,又恢复到没有分化的无组织的细胞团或愈伤组织的过程。,再分化:,脱分化状态的细胞再度分化形成另一种或几种类型的细胞的过程。,16,8.3.4培养基及其成分,1、,无机营养物,:大量元素和微量元素,2、,碳源,:蔗糖,维持细胞的渗透压,3、,维生素,:B,1,(必需), B,6,、烟酸、肌醇 (对生长起促进作用),4、,生长调节物质,:2,4-D,NAA,KT等,5、,有机附加物,:Gly、酵母汁、椰子乳、水解乳蛋白等。,17,凝固剂,:,琼脂 0.6-1.0% ;,pH5-6,;,灭菌,:,压力0.8-0.9 Kg.,cm,-,2, 15-20分钟,培养温度,:,24-28;有的要求昼夜温差,如花、果实,昼温23-25,夜温15-17 ,光照,:,1000-3000Lx,注意通气,其它条件,:,18,1、植物体的无性快速繁殖及脱毒,无性快速繁殖 园艺作物、农作物及林木的育苗,脱毒 马铃薯、草酶等茎尖生长锥,2、花粉培养和单倍体育种,花粉培养单倍体植株加速育种进程,8.3.5组织培养的应用,19,8.4种子的萌发(Germination of Seeds),8.4.1概念,8.4.1.1种子萌发(seed germination):,种子吸水到胚根突破种皮,(或播种到幼苗出土),之间所发生的一系列生理生化变化过程。,Germination in Monocots,Germination in Dicots,20,8.4.1.2种子生活力,种子生活力(seed viability),:指种子能够萌发的潜在能力或种胚具有的生命力。,鉴定种子生活力的方法:,(1)利用组织还原能力(TTC染色法),TTC,2H,三苯甲腙,脱氢E,氧化态 (无色) 还原态 ( 红色),21,2、利用原生质的着色能力 (染料染色法),活种子,的原生质膜有选择透性,不选择吸收染料,原生质(,胚,),不着色,。,3、利用细胞中的荧光物质,具有生活力的种子中的,蛋白质、核酸、核苷酸,等在荧光灯下都能发出明亮的,荧光,。,22,8.4.1.3种子活力,种子活力(seed vigor),: 种子,在田间状态下,迅速而整齐地萌发并形成健壮幼苗的能力。,包括,种子萌发成苗的能力,和,对不良环境的忍受力,两个方面。,种子活力与种子的大小、成熟度和贮藏条件有关。,23,8.4.1.4种子寿命,种子寿命(seed longevity),:从种子成熟到失去发芽力的时间。,顽拗性种子:不耐脱水和低温,寿 命很短,如:热带的 可可、芒果种子,正常性种子:耐脱水和低温,寿命 较长,如:水稻、花生,种子寿命与种子,含水量,和,贮藏温度,有关。,24,含水量(%) 温度() 发芽率(%),7 0.6 85以上,7 21.1 70,70 21.1 0,贮藏条件对棉籽寿命的影响(15年),25,8.4.2影响种子萌发的外界条件,1、足够的水分,吸水是种子萌发的第一步:,(1)水分使,种皮膨胀软化,,氧易透过种皮,增加胚的呼吸,胚根易突破种皮,(2)水分使原生质从,凝胶态转变为溶胶态,,代谢水平提高。,豆类作物种子吸水量较禾谷类大,。吸水速度与温度有关。,26,种子萌发要求含氧量高于10%,低于5%多数种子不能萌发。花生、大豆、棉花等,含脂肪较多的种子萌发时,较淀粉种子需更多的氧气,。,3、适宜的温度酶促反应,不同作物种子萌发时需要温度高低不同,,与其原产地密切相关,。一般适宜温度为,20-25,。,2、充足的氧气 有氧呼吸,27,4、光 有的种子萌发需光,需光种子,:光下才能萌发的种子, 如莴苣、烟草、多数杂草种子。,需暗种子:,光抑制种子萌发,如 茄子、番茄、瓜类种子。,对光不敏感种子,:有光无光都可,萌发, 如大多数农作物种子。,28,8.4.3种子萌发时的生理生化变化,(一)种子吸水,种子的吸水分为三个阶段:,急剧吸水阶段 吸胀性吸水,吸水停顿阶段,胚根出现, 大量吸水阶段 渗透性吸水,29,2、呼吸作用的变化,在吸水的第一和第二阶段,CO,2,的产生大大超过O,2,的消耗 ,无氧呼吸,;吸水的第三阶段,O,2,的消耗大于CO,2,的释放 ,有氧呼吸,。大量产生ATP,如小麦吸水30分钟,ATP增加5倍。,30,吸水,CO,2,O,2,31,3、酶的变化,(1)活化长寿的mRNA 新蛋白质 新酶,1、酶原的活化,:种子吸胀后立即出现, 如:-淀粉E,2、重新合成,:如-淀粉E,两种途径:,(2)新合成的mRNA 新蛋白质 新酶,32,4、贮藏物质的动员,蛋白质,新的氨基酸 N 酰胺等,CO,2,有机酸,幼苗,细胞壁物质,糖类,重建,膜,脂类,运输,贮藏物质,脂肪,乙醛酸循环,淀粉,糖类 蔗糖,种子 有机酸 CO,2,分解,Pr,aa N 酰胺、其它氮素 运输化合物,33,5、含磷化合物的变化,种子中最多的贮磷物质是,肌醇六磷酸 (又称植酸或非丁),。种子萌发时,植酸盐水解为肌醇和磷酸。,0-p,0-P,H,H,H,0-P,H,H,H,0-P,0-P,0-P,6H,2,O,肌醇+6H,3,PO,4,植酸酶,34,8.5.1生长大周期:植物器官或整株的生长速率会表现出“慢快慢”的基本规律。,8.5.2植物近似昼夜节奏(生物钟):植物的很多生理活动存在着昼夜的或季节的周期性变化,这些周期性变化很大程度决定于环境条件的变化。可是有一些植物体发生的昼夜周期性变化(如菜豆叶的昼夜运动),则不决定于环境条件的变化。即使在不变化的环境条件下,在一定天数内还仍然显示着这种周期性的、有节奏的变化。 这种生命活动的内源性节奏的周期在2028hr之间,接近24hr。称为近似昼夜节奏(circadian rhythm),或生物钟(biological clock)或生理钟(physiological clock),8.5 植株的生长,35,36,Leaves of the wood sorrel (酢浆草,Oxalis), during the day (a) and at night (b). One hypothesis for the function of such sleep movements is that they prevent the leaves from absorbing moonlight on bright nights, thus protecting the photoperiodic phenomena discussed later in this chapter. Another hypothesis, proposed Charles Darwin more than a century ago, is that the folding reduces heat loss from the leaves at night.,37,Plants are no exception to this general rule but we do not understand how time is recorded. As in most organisms, the typical clock cycle is about a 24 hours, which leads to the term circadian in relation to rhythms of plant movement, metabolism or growth. So called endogenous rhythms are most readily seen among plants that close their leaves or flowers at night. Once the rhythm is set up or entrained it will continue for several cycles in total darkness. There are also diurnal cycles of plant growth (most plants grow mainly at night) and more subtle changes such as enzyme activity.,38,测定近似节奏的装置,说明连续光暗变化的节奏性。,39,Dinoflagellate, 腰鞭毛虫(属于腰鞭毛目的原生动物,一种海生单细胞生物).具有如下三个特点:,Bioluminescence生物发光,Photosynthesis,Cell division,40,Bioluminescence reaches a peak in the middle of the night.,Photosynthesis reaches a peak in the middle of the day.,cell division (not shown) is restricted to the hours.,If Gonyaulax is kept in continuous dim light, these three functions continue to occur with the same rhythm for days and even weeks, long after a number of cell divisions have taken place. The rhythm of bioluminescence in Gonyaulax, like most circadian rhythms, can be altered by modifying the cycles of illumination. For example, if cultures of the alga are exposed to alternating light and dark periods, each 6 hours in duration, the rhythmic function will become entrained to this imposed cycle (left). If the cultures are then placed in continuous dim light, the organisms will return to their original rhythm of about 24 hours.,41,8.6 植物生长的相关性,8.6.1地下部与地上部的相关,1、相互依赖 ,有机营养物质和植物激素的交流,“根深叶茂” “本固枝荣”,相关性,:植物各部分间的相互制约与协调的现象。,根供给地上部生长所需的水分、矿物质、少量有机物、CTK和生物碱等。,而地上部供给根生长所需的糖类、维生素、生长素等,原因:,42,(1)水分,土壤缺,水,,R/T,;水分充足 ,R/T,(2)矿物质,N多,R/T,;,缺N,R/T,P、K充足, R/T,2、相互制约 对水分、营养的争夺,根冠协调与否的指标是,根冠比(R/T),影响根冠比的因素,:,(3)温度,较低温度时,R/T,43,在农业生产上,可用,水肥措施、修剪、生长调节剂等,来调控作物的根冠比,促进收获器官的生长。,8.6.2顶端优势,顶端优势,:植物顶端在生长上占优势的现象。,(4)光强,强光照,加速蒸腾,地上部生长受抑制,R/T,44,2、生长素学说,顶芽合成生长素并极性运输到侧芽,超过芽生长的最适浓度,抑制侧芽生长。,IAA,维持顶端优势,,GA,加强顶端优势,,CTK,破坏顶端优势。,1、营养学说,顶芽构成营养库,垄断了大部分营养物质,而侧芽因缺乏营养物质而受抑制。,45,8.6.3营养生长与生殖生长的相关,1、相互依赖,营养生长是生殖生长的物质基础;而生殖过程中产生的激素类物质又作用于营养生长。,2、相互制约,(1).营养器官生长过旺,消耗较多养分,影响生殖器官的生长,。,46,(2).生殖器官的生长抑制营养器官的生长。,如: 一次性开花植物 水稻、竹子,果树的大小年现象。,在生产上,利用营养生长与生殖生长的相关性制定相应措施。,47,8.7 外界条件对植物生长的影响,8.7.1温度对植物生长的影响,温度三基点与植物的原产地有关。,作物 最低温度 最适温度 最高温度,水稻 1012 2030 4044,小麦 05 2531 3137,南瓜 1015 3744 4450,48,生长的最适温度,:植物生长最快的温度。,协调最适温度,:使植株健壮生长的适宜温度。常要求在比生长,最适温度,略低的温度下进行。,生长还需要,温周期,。如番茄,在昼夜温度恒定为25下,生长较快,但在昼温26,夜温20下,则生长更快。,49,8.7.2水分对植物生长的影响,植物体缺水时,细胞分裂和细胞伸长都受到影响,但,细胞伸长对缺水更敏感(干根湿苗),。,如小麦、水稻的抽穗,主要是穗下节间的伸长,此期严重缺水,穗子抽不出或不完全抽出。,土壤水足,叶片大而薄;缺水,叶小而厚。,50,8.7.3光对植物生长的影响,间接作用,(1),光合作用合成的有机物是植物生长的物质基础。,(2),光合作用转化的化学能是植物生长的能量来源。,(3),、加速蒸腾,促进有机物运输,。,1、光强对植物生长的影响,间接作用,直接作作用,51,(1)、光抑制茎的生长,直接作作用:,a,、光照使自由IAA转变为结合态IAA。,b,、光照提高IAA氧化E 活性,加速IAA的分解。,52,(2),、光抑制多种作物根的生长,光可能促进根内形成ABA,或增加ABA活性。,53,2、光质对植物生长的影响,红光、蓝紫光抑制植物生长,紫外光抑制作用更明显。,原因:,红光增加细胞质 Ca,2+,,活化CaM,分泌Ca,2+,到细胞壁,细胞伸长受到抑制。,54,高山上的树木为什么比平地生长的矮小?,a、高山上云雾稀薄,光照较强,强光特别是紫外光抑制植物生长,b、高山上水分较少;土壤较贫瘠;气温较低;且风力较大,这些因素不利于树木纵向生长。,55,8.7.1.2对植物形态建成(morphogenesis)的影响,如:需光种子、幼叶展开和花芽分化等,称为,光形态建成,(photo morphogenesis)。另外,非可见光尤其是紫外光(Ultraviolet,UV)对生长的抑制作用。太阳光中的UV分为UV-A(320390nm,臭氧层不吸收),UV-B (280320nm,臭氧层部分吸收)和UV-C(小于280nm,臭氧层全部吸收)。,56,8.7.1.3机械刺激:风、机械、动物、植物间的摩擦、降水、冰雹、震动、摇晃等机械性动力影响植物的生长发育,这种现象称为植物的接触形态建成(thigmomorphogenesis) 。,Flytrap,捕蝇草,Here, an unwary fly attracted by nectar secreted on the leaf surface, can be seen on a leaf, before and after its closure.,Each leaf half is equipped with three sensitive hairs.,57,Arabidopsis thaliana plants six weeks of age. The plant on the left was touched twice daily; the plant on the right is the untreated control. The inhibition of growth by touch or other noninjurious mechanical stimulation resulting in reduced length and increased width is referred to as thigmomorphogenesis.,58,8.7.1.4重力(gravity,见植物运动),8.7.2化学因素:水分、大气(O,2,和CO,2,)、矿质和植物生长调节剂。,8.7.3生物因素:寄生、共生等。如:光、肥、水之间的竞争,杂草的滋生蔓延等现象称为相互竞争(allelospoly)。通过植物分泌化学物质促进或抑制周围植物的生长,这种现象称为相生相克(allelopathy), 亦称它感作用,引起它感作用的化学物质称为它感化合物(allelochemical)。,59,8.7.4 光形态建成,8.7.4.1概念:,依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成(photomorphogenesis),亦即光控制发育的过程。暗中生长的植物表现出各种黄化特征,茎细而长,顶端呈钩状弯曲,叶片小而呈黄白色,这种现象称为暗形态建成(skotomorphogenesis),它虽具全部遗传信息,但因缺乏光,大部分基因不能表达出来,亦称黄花现象(etiolation)。,Dark-grown seedlings (bean plants) are thin and pale; they have longer internodes and smaller leaves.,light-grown seedlings,60,8.7.4.2光敏色素结构和作用,黄化玉米幼苗经红光处理后,红光区域吸收减少,远红光区域吸收增多;如果用远红光处理,则红光区域吸收增多,远红光区域吸收消失。红光和远红光轮流照射后,这种吸收光谱可多次地可逆变化。 这种红光/远红光可逆反应的光受体 (色素蛋白质),称之为光敏色素(Phytochrome).,分子结构,Pr和Pfr吸收光谱,660nm,730nm,生色团,多肽链,61,8.7.4.2转换形式:吸收红光(R)的Pr型和吸收远红光(FR)的Pfr型。Pr是生理钝化型,Pfr是生理活化型。在黄花苗中仅存在Pr型,照射白光或红光后,没有生理活性的Pr型转化为具有生理活性的Pfr型;相反,照射远红光后,Pfr型转化为Pr型。,62,8.7.4.3光敏色素的分布,光敏色素分布在植物各个器官中。黄化幼苗的光敏色素含量比绿色幼苗高20-100倍。禾本科植物的胚芽鞘尖端、黄化豌豆幼苗的弯钩、各种植物的分生组织和根尖等部分的光敏色素含量较多。在细胞中,光敏色素分布在膜系统、胞质溶胶和细胞核等部位。,63,8.7.4.4 光敏色素的生理作用,高等植物中一些由光敏色素控制的反应:1.种于萌发;2.弯钩张开;3.节间延长;4.根原基起始;5.叶分化和扩大;6.小叶运动;7.膜透性;8.向光敏感性;9.花色素形成;10.质体形成;11.光周期;12.花诱导;13.子叶张开;14.肉质化;15.偏上性;16.叶脱落;17.块茎形成;18.性别表现;19.单子叶植物叶片展开;20.节律现象,64,8.8 植物的运动,8.8.1概念:高等植物不能像动物或低等植物那样整体的移动,但植物体的某些器官在内外因素的作用下能发生有限的位置变化,这就是植物的运动(plant movement)。高等植物的运动可分向性运动(tropic movement)和感性运动(nastic movement)。向性运动是由光、重力等外界刺激而产生的,它的运动方向取决于外界的刺激方向。感性运动是由外界刺激(如光暗转变、触摸等)或内部时间机制而引起的,外界刺激方向不能决定运动方向。,65,8.8.2 向光性(phototropism),植物生长器官受单方向照射而引起生长弯曲的现象称为向光性,或阳光追踪(solar tracing)、趋日性(heliotropism)。,Leaves of a lupine (Lupinus arizonicus,羽扇豆), orienting to track the course of the sun.,Solar tracking by a field of sunflowers (Helianthus annuus,向日葵).,66,向光性实验,67,68,Comparison of the photosynthetically useful solar radiation between 400 and 700 nanometers incident on a diaheliotropic leaf, a nontracking (horizontal) leaf, and a paraheliotropic leaf over the course of a day.,There are two types of heliotropism. In one (diaheliotropism,双趋性), the movement of the leaves is such that the broad surfaces of the blades remain perpendicular to the suns direct rays throughout the day. In such leaves, more photons are available for photosynthesis, and photosynthetic rates appear to be higher throughout the day than in nontracking leaves or leaves exhibiting the second type of heliotropism. In this second type, plants actively avoid direct sunlight during periods of drought by orienting their leaf blades parallel to the suns rays (paraheliotropism,偏日性). This orientation minimizes absorption of solar radiation ratherthan maximizing it, decreasing leaf termperature and transpirational water loss and enhancingsurvival during drought periods.,69,8.8.3向重力性(gravitropism),向重力性就是植物在重力影响下,保持一定方向生长的特性。根顺着重力方面向下生长,称正向重力性(positive gravitropism);茎背离重力方向向上生长,称为负向重力性(negative gravitropism);地下茎侧水平方向生长,称为横向重力性(diagravitropism)。,70,Gravitropic responses in the shoot of a,young tomato plant (Lycopersicon escu-,lerttum). The plant in (a) was placed on,its side and kept in a stationary position;,the plant in (b) was placed upside down,and held in position in a ring stand.,71,感受重力最敏感的器官是,根冠,。去除根冠失去重力性。根冠中的柱细胞中含有,淀粉体,(amyloplast),,亦称平衡石(statolith)。一个细胞内有4-12个淀粉体,每个造粉体外有一层膜,内有1-8个淀粉粒。植物体内平衡石的分布因器官而异。根部的平衡石在根冠中,茎部的平衡石分布在维管束周围的1-2层细胞(也称淀粉鞘)。平衡石在重力影响下,下沉在细胞底部。,72,Photomicrograph of a median longitudinal section of the root cap of the primary root of the common bean. Arrows point to,amyloplasts,sedimented near the transverse walls in the central column cells of the root cap. The amyloplasts (arrows) are visible at the bottom of each cell near the transverse walls.,73,1.根冠的淀粉体受到重力影响,向下运动压在内质网上;2.诱使内质网将Ca,2+,释放出来;3.Ca,2+,与钙调素结合,呈激活状态;4.激活钙泵和生长素泵;5.前者将Ca,2+,运到细胞壁,后者将生长素运到细胞壁。生长素大部分分布在根的下侧,Ca,2+,也促进生长素返回伸长区下侧。下侧生长素过多,抑制伸长区伸长,而上侧生长素较少,生长正常上侧生长快,下侧生长慢,所以根就向重力方向弯曲生长。,质膜,淀粉体,钙调素,钙泵,生长素泵,生长素,74,8.8.4向触性(thigmotropism),A less apparent, though common, tropism is thigmotropism (from the Greek thigma, meaning touch), a response to contact with a solid object. One of the most common examples of thigmotropism is seen in tendrils, which are modified leaves in some species and modified stems in others. The tendrils wrap around any object with which they come in contact and so enable the plant to cling and climb. The response can be rapid; a tendril may wrap around a support one or more times in less than one hour. Cells touching the support shorten slightly and those on the other side elongate.,75,8.8.5感触性(感震性)Thigmonasty(seismonasty),含羞草,(Mimosa pudica),经过触摸、摇晃、电激或热激等的变化情况,76,叶枕,皮层,Diagrammatic representation of pulvini in Mimosa pudica. (a) Portion of rachis showing three leaflets, each with a pulvirtus at its base. (b) Transverse section through a rachis with two leaflets in the closed condition, showing longitudinal view of the pulvini. (c) Transverse section through a pulvinus showing the core of,the vascular tissue surrounded by a cortex, which consists largely of thin-walled parenchyma cells.,含羞草运动的过程,77,
展开阅读全文