数学概念及其教学

上传人:gb****c 文档编号:242970832 上传时间:2024-09-13 格式:PPT 页数:36 大小:126KB
返回 下载 相关 举报
数学概念及其教学_第1页
第1页 / 共36页
数学概念及其教学_第2页
第2页 / 共36页
数学概念及其教学_第3页
第3页 / 共36页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,数学概念及其教学,杨 孝 斌,1,一、数学概念的意义和结构,数学概念的意义,概念是反映事物本质属性和特征的思维形式,.,概念来自本质,而本质来自存在,.,列宁,2,数学概念是反映(现实世界)空间形式和数量关系的本质属性的思维形式.,数学概念产生和发展有各种不同的途径:,1)直接从它的现实模型中抽象概括得出,如几何中的点、线、面、体等概念;,2)在已有概念的基础上进一步抽象概括而形成,如群、环、域等;,3)人们将客观事物的属性理想化、纯粹化得到数学概念,如“直线”;,4)在一定的数学对象结构中产生数学概念,如“三线八角”;,5)根据数学本身发展的需要而产生,如负数、虚数、n 维空间等.,3,数学概念是用数学语言来表达的,其主要形式是语词和符号.,如:角,、三角形,、平行,、阶乘,!,等等.,同一数学概念可能有不同的词语表达,如:“等边三角形”又可表达为“正三角形”.,4,概念是人类思维的基本结构单位.,概念又是命题、推理和论证的基础.,可以说每一门学科,都是一个概念的系统.,5,2.概念的内涵和外延,概念的内涵(内包)概念所反映的,这类事物的共同的本质属性,,即确定的涵义,是对概念的质的规定;,概念的外延(外包)概念所反映的,这类事物的全体,,即确定的对象范围,是对概念的量的描述.,6,注:,1)概念的内涵和外延分别指一个概念“是什么样的?”和“是指哪些对象?”,2)概念的内涵和外延既是统一的又是互相联系、互相制约的,在一定的条件下,概念的内涵和外延是互相确定的.,3)概念的内涵和外延之间还表现在发展中的,反变关系,即:概念的内涵越多,则外延越小;概念的内涵越少,则外延越大.,7,举例:,在自然数系中,“偶数”概念的内涵和外延分别是什么?,“平行四边形”的内涵和外延分别是什么?,8,对于“矩形”这个概念,如果增加“有一组邻边相等”这个性质后,就成为外延缩小的概念正方形;在矩形内涵中减少“有一个角是直角”的属性,就得到外延扩大的概念平行四边形.,9,概念的限定和概括是明确概念内涵和外延的逻辑方法,即给概念下定义.,10,二、,概念间的关系,根据概念的外延集有无重合之处,概念间的关系可分为相容关系和不相容关系.,规定:,所有概念的外延集都是非空集合.,11,相容关系,若,AB,则称概念甲概念乙之间有相容关系,.,又可进一步具体分为同一关系、属种关系和交叉关系,.,设集合A、B、C为概念甲、乙、丙的外延集.,12,A=B,A,B,同一关系,(或全同关系),如:“不大于”和“小于或等于”,注:数学中的恒等变形就是,利用概念间的同一关系进行的 .,属种关系,比如:实数和有理数、平行四边形和矩形.,又称从属关系,甲称为属概念,乙称为种概念,借用生物学中的概念,13,A,B,交叉关系,比如:矩形和菱形、非负有理数和非正有理数,利用概念间的交叉关系可以概括出新的概念矩形的外延集和菱形的外延集的交集是“正方形”,14,不相容关系( 又称在同一属概念丙之下的全异关系),矛盾关系( ),反对关系( ),大前提:AB,15,相对于属概念“实数”而言,其种概念“有理数”与“无理数”之间就是矛盾关系但相对于属概念“复数”而言,它们就是反对关系,相对于属概念“三角形”而言,其种概念“锐角三角形”与“直角三角形”之间就是反对关系,概念间的不相容关系是数学中反证法、穷举法的依据之一,16,三、 概念的定义,概念的定义就是揭示一个概念的内涵或外延的逻辑方法,揭示内涵的定义称为内涵定义,明确外延的定义称为外延定义,17,定义的结构:,被定义项(B)、定义项(D)、定义联项,概念定义的表达主要是:B就是D,常见的还有:“ B是D”;“B等于D”;“B当且仅当D”;“D叫做B”;“D称为B”,等腰三角形,就是,有两边相等的三角形,B,连项,D,18,下定义的方式方法,()属种定义,方式:,被定义项,=,(邻近的属)+(种差),B (连项) D,矩形,就是,一个角是直角,的,平行四边形,种差邻近的属,B (连项) D,又称之为“属概念种差”定义法,派生出两种特殊形式:发生式定义和关系定义,19,发生式定义,以被定义概念所反映的对象产生或形成的过程作为种差下定义的方式,例:圆就是把定长线段的一端固定,使另一端旋转,一周而成的一条封闭曲线,换言之:到定点的距离等于定长的点的轨迹,20,关系定义,以被定义概念所反映的对象之间的关系作为种差下定义的方式,例:“偶数”就是能被2整除的整数,注:属加种差的定义方式,有一定的局限性,例:“范畴”这一概念就无法采用这种方式定义,21,()外延定义,列举“被定义概念所属的、所有互不相容的种概念”的方式下定义,例:,正、负整数,正、负分数和零,统称为,有理数,;,D B,有理数和无理数,统称为,实数,D B,注:约定式定义也属于揭示外延的方法例如:0!=1 等等,22,()语词定义,用语词说明被定义项的含义的方式,例 :,“ ”表示空集;,“ ”表示属于;,“ ”表示“连加”,此外,还有递归定义,公理化定义等等,23,3 下定义应遵循的规则,规则1 定义要相称,就是定义项和被定义项的外延必须全同,若定义项的外延大于被定义项的外延,则定义“过宽”;,若定义项的外延小于被定义项的外延,则定义“过窄”,24,“两条不相交的直线称为平行直线”;(还可以重合),“无理数就是不尽方根”过窄,“无限小数叫无理数”过宽,25,规则2 定义要符合逻辑,就是要明白、清晰,不得循环、不得同义反复.,“相交成直角的两条直线,叫做互相垂直的直线”与“两边互相垂直的角,叫做直角”这两个定义出现了循环.,“类似的图形称为相似形”就是自我定义、空洞无物的同义反复。,26,规则3 定义要简明、扼要、精练,不要越级、不要重复.,“有四条边且两组对边分别平行的多边形称为平行四边形”就不简明了,因为多边形不是平行四边形的邻近的属概念;,“两组对边分别平行且相等的四边形称为平行四边形”也是不简明,因为列举的种差之间不独立.,27,规则4 定义中的定义项一般不应包含负概念.,反映对象不具有某种属性的概念,叫做负概念.,中学数学中较少使用包含负概念的定义方式,平行线是在同一平面内不相交的直线;,无理数是无限不循环小数;,奇数是不能被2整除的整数。,28,4 原始概念:数学中无定义的概念,又叫原名.,如:点、直线、平面、集合等.,29,四、概念的科学分类(划分),划分就是把一个概念(属)按照某一属性分成若干个具有不相容关系的种概念.,划分实质是反映一类事物的分类,它和整体事物分解是根本不同的,划分后的各子项都具有母项的本质属性,但分解后的部分,却不一定都具有整体的特性.,30,例:,将“三角形”划分为“直角三角形”“锐角三角形”“钝角三角形”,它们都具有三角形的本质属性;但如果把“三角形”分解为“三条边”、“三个角”等部分,那么这些部分就不会有“三角形”的整体特征了.,31,(1)划分的三要素:,划分的母项、子项和划分的标准.,被分的属概念称为划分的母项,分得的若干种概念称为划分的子项,划分所依据的属性称为划分的标准.,32,(2)划分的规则,规则1,划分要相称,即划分应不重不漏.,例如:整数分为正整数、负整数,即出现遗漏。若分为非正整数、非负整数,即出现重复.,规则2,划分要用同一的标准.,例如:将三角形划分为锐角三角形、直角三角形、钝角三角形和等腰三角形四类就是一个混乱、错误的划分.,规则3,划分要逐级逐次进行,不要越级.,例如:把实数划分为整数、分数、无理数就不符合这一要求.,33,(3)二分法,将属概念划分为具有相互矛盾关系的两个种概念的划分方法称为二分法,多边形,34,五、数学概念的教学,1.重视数学概念的引入现实性原则,(1)以感性材料为基础引入新概念,(2)在学生原有概念的基础上引入新概念,2.注意数学概念的理解科学性原则,(1)正确表述概念的本质属性,(2)认清概念间的关系,掌握有关概念间的逻辑联系,3.加强数学概念的运用应用性原则,35,思考题:,1、请用适当的方法定义下列概念:,棱柱,圆柱,二次方程,二次函数,抛物线,函数,直线,2、将下列概念适当分类:,棱柱,四边形,三角形,36,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!