倪以信动态电力系统PowerSystemDynamics

上传人:gp****x 文档编号:242919794 上传时间:2024-09-11 格式:PPT 页数:29 大小:280.50KB
返回 下载 相关 举报
倪以信动态电力系统PowerSystemDynamics_第1页
第1页 / 共29页
倪以信动态电力系统PowerSystemDynamics_第2页
第2页 / 共29页
倪以信动态电力系统PowerSystemDynamics_第3页
第3页 / 共29页
点击查看更多>>
资源描述
,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Power System Dynamics,- Postgraduate Course of Tsinghua Univ. Graduate School at Shenzhen,NI Yixin,Associate Professor,Dept. of EEE, HKU,1,Introduction,0.1 Requirements of modern power systems (P. S. ),0.2 Recent trends of P. S.,0.3 Complexity of modern P. S.,0.4 Definitions of different types of P. S. stability,0.5 Computer-aid P. S. stability analysis,0.6 Contents of our course,2,Introduction (1),0.1 Requirements of modern power systems (P. S. ),Satisfying load demands (as a power source),Good quality: voltage magnitude, symmetric three phase voltages, low harmonics, standard frequency etc. (as a 3-phase ac voltage source),Economic operation,Secure and reliable operation with flexible controllability,Loss of any one element will not cause any operation limit violations (voltage, current, power, frequency, etc. ) and all demands are still satisfied.,For a set of specific large disturbances, the system will keep stable after disturbances.,Good energy management systems (EMS),3,Introduction (2),0.2 Recent trends of P. S.,Systems interconnection: to obtain more benefits.,It may lead to new stability issues ( e.g. low-frequency power oscillation on the tie lines; SSR caused by series-compensated lines etc. ).,Systems are often heavily loaded and very stressed.,System stability under disturbances is of great concern.,New technology applications in power systems. (e.g. computer/ modern control theory/ optimization theory/ IT/ AI tech. etc. ),Power electronics applications: provides flexible controller in power systems. ( e. g. HVDC transmission systems, STATCOM, UPFC, TCSC, etc.),4,Introduction (3),0.3 Complexity of modern P. S.,Large scale,Hierarchical and distributed structure,Non-storable electric energy,Fluctuate and random loads,Highly nonlinear dynamic behavior,Unforeseen emergencies,Fast transients which may lead to system collapse in seconds or minutes,Complicated control and their coordination requests.,- Modern P. S. is much more complicated than ever and in the meantime it plays a significant role in modern society.,5,Introduction (4),Some viewpoints of Dr. Kundur (author of the ref. book ):,- The complexity of power systems is continually increasing because of the growth in interconnections and use of new technologies. At the same time, financial and regulatory constrains have forced utilities to operate the systems nearly at stability limits.,- Of all the complex phenomena on power systems, power system stability is the most intricate to understand and challenging to analyze. Electric power systems of the 21 century will present an even more formidable challenge as they are forced to operate closer to their stability limit.,6,Introduction (5),0.4 Definitions of different types of P. S. stability,P. S. stability,: the property of a P. S. that enable it to remain in a state of operating equilibrium under normal operating conditions and to return to an acceptable state of equilibrium after being disturbed.,Classification of stability,Based on size of disturbance:,large disturbance stability ( transient stability, IEEE): nonlinear system models,small disturbance/signal stability ( steady-state stability, IEEE): linearized system models,The time span considered:,transient stability: 0 to 10 seconds,mid-term stability: 10 seconds to a few minutes,long-term stability(dynamics): a few minutes to 1 hour,7,Introduction (6),0.4 Definitions of different types of P. S. stability (cont.),Classification of stability (cont.),Based on physical nature of stability:,Synchronous operation (or angle) stability:,insufficient synchronizing torque - non-oscillatory instability,insufficient damping torque - oscillatory instability,Voltage stability:,insufficient reactive power and voltage controllability,Subsynchronous oscillation (SSO) stability,insufficient damping torque in SSO,8,Introduction (7),0.5 Computer-aid P. S. stability analysis,9,Introduction (8),0.6 Contents of the course,Introduction,Part I: Power system element models,1. Synchronous machine models,2. Excitation system models,3. Prime mover and speed governor models,4. Load models,5. Transmission line and transformer models,Part II: Power system dynamics: theory and analysis,6. Transient stability and time simulation,7. Steady-state stability and eigenvalue analysis,8. Low-frequency oscillation and control,9. *Voltage stability,10. *Subsynchronous oscillation,11. Improvement of system stability,Summary,10,Part I Power system element models,Chapter 1,Synchronous machine models,(a),11,Chapter 1 Synchronous machine (S. M.) models,1.1 Ideal S. M. and its model in abc coordinates,1.1.1 Ideal S. M. definition,Note:,* S. M. is a,rotating,magnetic element,with complex dynamic behavior,. It is the,heart,of P. S. It,* It provides,active and reactive power,to loads and has,strong,power, frequency and voltage regulation/control capability,.,* To study S. M., mathematic models are developed for S. M.,* Special assumptions are made to simplify the modeling.,12,Chapter 1 Synchronous machine (S. M.) models,1.1.1 Ideal S. M. definition (cont.):,Assumptions for ideal S. M.,Machine magnetic permeability (,m,) is a constant with magnetic saturation neglected. Eddy current, hysteresis, and skin effects are neglected, so,the machine is linear.,Symmetric rotor structure,in direct (d) and quadratic (q) axes.,Symmetric stator winding structure,:,the three stator windings are 120 (electric) degrees apart in space with,same structure,.,The stator and rotor have,smooth surface,with tooth and slot effects neglected. All windings generate,sinusoidal distributed,magnetic field,.,13,Chapter 1 Synchronous machine (S. M.) models,1.1.2 Voltage equations in abc coordinates,Positive direction setting:,dq and abc,axes, speed,direction,Angle,definition:,Y,directions for,abcfDQ,windings,i,directions for,abcfDQ,u,directions for,abcfDQ,(u,D,=u,Q,=0),14,Chapter 1 Synchronous machine (S. M.) models,1.1.2 Voltage equations in abc coordinates (cont.),Voltage equations for abc windings:,where,p,= d / dt, t in sec.,r,abc,: stator winding,resistance, in,W,.,i,abc,:,stator winding,current, in A.,u,abc,: stator winding,phase voltage, in V.,y,abc,: stator winding,flux linkage, in Wb.,Note: *,p,y,abc,: generate emf in abc windings,*,u,abc,i,abc,: in,generator,conventional direction.,*,i,abc,y,abc,:,positive,i,abc,generates,negative,y,abc,respectively,15,Chapter 1 Synchronous machine (S. M.) models,1.1.2 Voltage equations in abc coordinates (cont.),Voltage equations for fDQ windings:,r,fDQ,: rotor winding resistance, in,W,.,f,: field winding,D: damping winding in d-axis,Q: damping winding in q-axis.,i,fDG, u,fDG,y,fDG,: rotor winding currents,voltages and flux linkages in A, V, Wb.,Note: * u,D,=u,Q,=0,* u,fDQ,i,fDQ,: in load convention,* i,fDG,y,fDG,: positive,i,fDG,generates,positive,y,fDG,respectively,* q-axis,leads,d-axis by 90 (electr.) deg.,16,Chapter 1 Synchronous machine (S. M.) models,1.1.2 Voltage equations in abc coordinates (cont.),Voltage equations in matrix format:,where before,i,abc,is caused by,generator convention,of stator windings.,17,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in abc coordinates,18,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in abc coordinates (cont.),In Flux linkage eqn.:,L,ij,(,i, j,=,a, b, c, f, D, Q,): self and mutual inductances,L,11,: stator winding self and mutual inductance,L,22,: rotor winding self and mutual inductances,L,12,L,21,: mutual inductances among,stator and rotor windings ,y, i,: same definition as voltage eqn.,Note: * Positive,i,abc,generates negative,y,abc,respectively.,* The negative signs of,i,abc,make,L,aa,L,bb,L,cc, 0.,19,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in abc coordinates (cont.),Stator winding self/mutual inductance (,L,11,),Stator winding self inductance (L,aa, L,bb,L,cc,),L,aa,: reach max d-a aligning (when,q,a,=0, 180),reach min d-a perpendicular (when,q,a,=90, 270),L,aa,q,a,: sin-curve, with period of 180,(LsLt0, for round rotor: Lt=0),(See appendix 1 of the text book for derivation),20,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in abc coordinates (cont.),Stator winding self/mutual inductance (,L,11,),Stator winding mutual inductance,L,ab,: reach max |.| when,q,a,= -30, 150,reach min |.| when,q,a,= 60, 240,L,aa,q,a,: sin-curve, with period of 180,(MsLt0, for round rotor: Lt=0),(See appendix 1 of the text book for derivation),21,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in,abc,coordinates (cont.),Rotor winding self/mutual inductance (,L,22,),Rotor winding self inductance,(constant: why?),L,ff,= L,f,= const. 0,L,DD,= L,D,= const. 0,L,QQ,= L,Q,= const. 0,Rotor winding mutual inductance,L,fQ,= L,fQ,= 0, L,DQ,= L,QD,= 0,L,fD,= L,Df,= M,R,= const.,0,22,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in,abc,coordinates (cont.),Stator and rotor winding mutual inductance,(,L,12,;,L,21,),abcf:,(M,f,=const.0, period: 360, max. when,d-abc,align),abcD: similar to abcf, M,f,M,D,0,abcQ:(M,Q,=const.0, period: 360,max. when,q-abc,align),23,Chapter 1 Synchronous machine (S. M.) models,1.1.3 Flux linkage equations in abc coordinates (summary),Time varying,L,-matrix : related to rotor position,L,11,(abcabc): 180,period; L,12, L,21,(abcfDG): 360,period.,Non-sparse,L,-matrix: most mutual inductances,0,L,-matrix: non-user friendly, lead to abc,dq0 coordinates!,24,Chapter 1 Synchronous machine (S. M.) models,1.1.4 Generator power, torque and motion eqns.,Instantaneous output power eqn. (P,e,in W),Electromagnetic torque eqn. (,T,e,in N-m,q,in rad.),25,Chapter 1 Synchronous machine (S. M.) models,1.1.4 Generator power, torque and motion eqns. (cont.),Rotor motion eqns.,According to Newtons law, we have:,where T,m,: input mechanical torque of generator (in N-m),T,e,: output electromagnetic torque (in N-m),w,m,/,q,m,: rotor mechanical speed/angle (in rad/s, rad.),w,e,/,q,e,: rotor electrical speed/angle (in rad/s, rad.),J,: rotor moment of inertia (also called rotational inertia),J= Kg-m,2,In the manufacturers handbook, J is given by GD,2, in ton-m,2,.,GD,2, (ton-m,2,),10,3,/4,J (Kg-m,2,).,26,Chapter 1 Synchronous machine (S. M.) models,1.1.4 Generator power, torque and motion eqns. (cont.),Rotor motion eqns. (cont.),27,Chapter 1 Synchronous machine (S. M.) models,1.1.5,Summary of S. M. model in abc coordinates and SI units:,6 volt. DEs. (abcfDQ):,6 flux linkage AEs. (abcfDQ):,2 rotor motion eqns. (,w,q):,Totally 14 eqns. with 8 DEs and 6 AEs.,8,th,order nonlinear model.,8 state variables are:,y,(6,1) and,w,q,(related to 8 DEs),Totally 19 variables:,u,: 4 (v,D,=v,Q,=0),i,: 6,y,: 6, plus (T,m,w,q).,If 5 variables are known, remaining 14 variables can be solved.,Usually u,f,and T,m,are known (as input signals), 3 network interface eqns. (3 v,abc,-i,abc,relations from network) are known.,28,Chapter 1 Synchronous machine (S. M.) models,1.1.5,Summary of S. M. model in abc coordinates (cont.),Request of transformation of S. M. model:,abc to dq0 coordinates: Parks transformation, Parks eqns.,per unit system and S. M. pu model,Reduced-order practical models:,- Neglect stator abc winding transients (8,th,order,5,th,order). It can interface with network Y-matrix in Aes.,- Introduce practical variables (E,dq, E”,dq, E,f,etc.),29,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!