LDO设计讨论课件

上传人:风*** 文档编号:242585101 上传时间:2024-08-28 格式:PPT 页数:37 大小:3.83MB
返回 下载 相关 举报
LDO设计讨论课件_第1页
第1页 / 共37页
LDO设计讨论课件_第2页
第2页 / 共37页
LDO设计讨论课件_第3页
第3页 / 共37页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,LDO,设计讨论,邢向龙,上海复旦微电子股份有限公司,2008,年,04,月,03,日,1,LDO设计讨论邢向龙上海复旦微电子股份有限公司1,LDO,与,DC-DC,LDO,DC-DC,Vin vs. Vout,VoutVin,VoutVin,Boost,Response time,Fast,Slow,Efficiency,Low,High,Noise,Low,High (Clock),Cost,Low (C),High (L+C),2,2024/8/28,LDO与DC-DCLDODC-DCVin vs. VoutV,LDO,设计参数,稳态参数:静态功耗,,Dropout,电压,精度(负载调整率,线性调整率),温度特性,效率,动态参数:线性瞬态响应,负载瞬态响应,启动时间,频率参数:稳定性,,PSRR,,噪声,其他:面积,Trade-off!,3,2024/8/28,LDO设计参数稳态参数:静态功耗,Dropout电压,精度(,LDO,设计参数,LDO Application,CL: uF (external),Dropout:,Load regulation:,Line regulation:,Efficiency:,低,dropout,电压意味着更大的面积!,4,2024/8/28,LDO设计参数LDO Application CL:,LDO,架构,由调整管,电阻反馈网络和控制电路构成的负反馈环路使得当,ViVo,时,根据负载电流的大小改变调整管的导通能力,使,Vo,在一定负载范围内保持稳定输出,可供选择的调整管器件包括,PMOS,,,NMOS,,,NPN,,,PNP,和,Darlington,管,PMOS,是各方面性能(静态功耗,导电能力,速度,,dropout,电压和工艺等)折中考虑后最好的选择,也是最常见的调整管器件,5,2024/8/28,LDO架构由调整管,电阻反馈网络和控制电路构成的负反馈环路使,LDO,架构,Pass element: PMOS, gmp,EA: Error amplifier with gain of A1,Buffer: optional, gain1,Feedback loop: EA+buffer+PMOS+R1|R2,Protection circuits: Thermal, Overcurrent, Reverse battery protection,CL: uF; Resr: 0several ohms,6,2024/8/28,LDO架构Pass element: PMOS, gmpPr,LDO,架构,Loop gain:,Load regulation:,Line regulation:,Frequency response:,7,2024/8/28,LDO架构Loop gain:Load regulation,设计考虑,LDO,的环路稳定性是关键,负载电流变化大(,0,几十或者几百,mA),为频率补偿带来难度(输出端的极点位置变化很大,,rds,与输出电流成反比),低,dropout,电压大负载电流要求芯片的面积增大,使得寄生极点的频率比较低,增加补偿难度,低功耗可以增加环路增益,但同时会使,LDO,瞬态特性变差,,在电源电压不变的情况下,低功耗同时也意味着芯片面积增大,增加环路增益和调整管尺寸可改善负载调整率和线性调整率,8,2024/8/28,设计考虑LDO的环路稳定性是关键,负载电流变化大(0几十或,LDO,频率补偿,1.,使用,ESR,补偿,原理:使用,ESR,电阻与,Co,构成的零点抵消一个次极点影响,频率响应最差情况发生在最大负载时,此时主极点处于较高频率,高频极点有可能落在单位增益带宽之内,使相位裕度变差,这种方法的缺点在于电容的,ESR,受到温度,电压,频率和材料等因素影响,不够稳定,,ESR,的取值范围根据不同的应用有一定限制,且,ESR,的引入会对,LDO,的瞬态特性带来不利影响,9,2024/8/28,LDO频率补偿1. 使用ESR补偿原理:使用ESR电阻与Co,LDO,频率补偿,LDO,的,buffer,Px,和,Zx,产生原理,增益提高的频率响应,加入,buffer,增加对调整管的驱动能力,第一级运放用,cascode,提高增益,Cff,产生一对零极点,保证,UGB,不变,10,2024/8/28,LDO频率补偿LDO的bufferPx和Zx产生原理增益提高,LDO,频率补偿,2.,密勒电容补偿,原理:利用,Miller,电容倍乘原理,将误差放大器的输出补偿为主极点,电流镜比例因子,第二级跨导,第一级跨导,第二级输出阻抗,CL:1.5nF20uF, ESR:03,Iout:0200mA, Iq:30uA,Dc gain:60dB, UGB: tens of khz,11,2024/8/28,LDO频率补偿2. 密勒电容补偿原理:利用Miller电容倍,LDO,频率补偿,电容倍乘原理,12,2024/8/28,LDO频率补偿电容倍乘原理122023/9/4,LDO,频率补偿,3.,零点,-,极点跟踪补偿,原理:利用可变电阻,Zc,和补偿电容,Cc,构成的零点抵消输出端极点,K,是常数。,Dc gain:72dB, PM:86,UGB: around 1khz,Iout:0100mA,13,2024/8/28,LDO频率补偿3. 零点-极点跟踪补偿原理:利用可变电阻Z,LDO,频率补偿,4.,压控电流源,(VCCS),补偿,VCCS,引入零点补偿,VCCS,的实现,原理:通过,VCCS,引入一个零点,优点:消除了,ESR,要求,CL:2.2uF, ESR:60,UGB: 250khz650khz,14,2024/8/28,LDO频率补偿4. 压控电流源(VCCS)补偿VCCS引入零,LDO,频率补偿,5. Adaptive miller compensation (AMC) + phase_lead compensation,AMC,Phase lead compensation,15,2024/8/28,LDO频率补偿5. Adaptive miller comp,LDO,频率补偿,电路实现,Rm,为一随着负载电流变化而变化的电阻,所以,Zm,是一个可变零点,超前相位补偿在大负载电流时用,Zf,来增加环路的相位裕度,CL:2.2uF,Iout:03A,Dc gain:60dB, PM:60,PSRR: -30dB20khz10mA,16,2024/8/28,LDO频率补偿电路实现Rm为一随着负载电流变化而变化的电阻,,LDO,频率补偿,6. Damping factor control compensation,Cout0, Iout=0,Cout0, Iout0,Cout=0, Iout0,17,2024/8/28,LDO频率补偿6. Damping factor contr,LDO,频率补偿,电路实现,CL:Free (0, 10uF in paper, Cm1+Cm2+CF190dB, PSRR: -30dB1Mhz,Vref: 302.24mV, TC(LDO):38ppm/,18,2024/8/28,LDO频率补偿电路实现CL:Free (0, 10uF in,LDO,频率补偿,7. Pole-zero pairs cancellation scheme,原理:产生一系列成对零极点,,Zi=10*Pi,,其对相位的作用互相抵消,Case 1: CL=0,输出极点频率很高,,PM=135,Case 2: CL0,,,ESR=0, PM45,Case 3: CL0,,,ESR 0, PMPM_case2,CL:047uF,Iout:0150mA, Iq:90uA,Dc gain:40dB,Vout=2.5V,ESR: 0RL_min,19,2024/8/28,LDO频率补偿7. Pole-zero pairs canc,LDO,频率补偿,8. Internal miller compensation (acts only at heavy load),Error Amplifier,Error Amplifier,原理:通过该结构将两个次极点(,P2,和,P3,)推向高频,,P1,为主极点,,miller,补偿和零点在大电流负载时起作用,CL:2.2uF, vref=0.6v,Iout:0100mA, Iq=47uA,Load_reg:0.1mV/mA,20,2024/8/28,LDO频率补偿8. Internal miller comp,设计实例,设计指标:,最大电流负载,300mA,CL=2.2uF,静态电流,50uA,Dropout,电压,120mV,输入电压,3.34.2V,输出电压,3.3V,PSRR: 50dB,21,2024/8/28,设计实例设计指标:212023/9/4,设计实例,误差放大器,补偿网络,PMOS PASS,电阻反馈,PMOS Buffer,瞬态性能增强电路,22,2024/8/28,设计实例误差放大器补偿网络PMOS PASS电阻反馈PMOS,设计实例,误差放大器采用单极对称结构的运放,,buffer,用,PMOS,源极跟随器实现,增加对,PMOS,调整管的驱动能力,频率补偿采用,miller,电容和动态零点(,可变,MOS,电阻,+,固定电容)相结合的方法,,为提高,LDO,在负载突变时的瞬态响应,增加了瞬态性能增强电路。,Equations:,(k=4),(A=1/1000, B=1/4),(C=1/1000),23,2024/8/28,设计实例误差放大器采用单极对称结构的运放,buffer用PM,设计实例,设计步骤:,根据输入电压、最大负载电流以及,dropout,指标计算调整管尺寸,根据静态功耗指标为各模块分配功耗,设计基准电压,设计误差放大器和反馈网络,设计频率补偿,设计其他辅助电路,整体协调仿真,24,2024/8/28,设计实例设计步骤:242023/9/4,设计实例,误差放大器:,单极结构,有利于频率补偿,直流增益,55dB,左右,,LDO,环路增益主要由该极增益贡献,功耗,10uA,,考虑瞬态性能,(slew rate),,功耗不能太小,对称结构,可利用,miller,电容倍乘效应,也可采用,cascode,结构获得更高的直流增益,代价是增加功耗,25,2024/8/28,设计实例误差放大器:也可采用cascode结构获得更高的直流,设计实例,Steady-state characteristics,Temp. (,),V,DO,(mv) 1mA,V,DO,(mv) 200mA,V,DO,(mv) 300mA,25,0.5,99,148,-40,0.42,84,127,85,0.56,109,164,静态电流,输出电压,负载电流,Dropout,电压,静态电流,由于在瞬态性能增强电路以及过流保护电路中对负载电流按一定比例采样,因此静态电流随着负载电流增大而增大,I_load: 0300mA,I_q:45uA890uA,26,2024/8/28,设计实例Steady-state characteristi,设计实例,Steady-state characteristics,Vin,Temp(,),Ld_reg(mv/A)(m,),4.2,25,23,4.2,-40/85,22/21,3.4,25/-40/85,187/92/229,T=-40,T=85,T=25,Load regulation,Iload:100uA300mA,T=-40,T=85,T=25,Line regulation,Iload:1mA,Vin:3.44.2V,Temp(,),Lin_reg(mv/V),25,0.57,-40,0.66,85,0.70,27,2024/8/28,设计实例Steady-state characteristi,设计实例,LDO,环路增益随着负载电流增大略有下降,增益的减小主要来源于输出级,,PMOS,的跨导与负载电流平方根成正比,而其输出阻抗与输出电流成反比,环路的零极点分布与负载电流相关,大负载电流时,主极点等效在误差放大器的输出,而小电流时主极点位于,LDO,输出端,Frequency responseBode Diagram,28,2024/8/28,设计实例LDO环路增益随着负载电流增大略有下降,增益的减小主,设计实例,Frequency responsepole-zero tracking,(a),(b),(c),Iload,Gain(dB),GB(khz),0,75.8,0.928,50uA,79.2,4.93,10mA,75.7,33.5,300mA,73.5,51.3,29,2024/8/28,设计实例Frequency responsepole-ze,设计实例,Frequency responsepower supply rejection,电源抑制比的低频值与线性调整率相同,随着频率升高,电源抑制比迅速下降,这是因为在高频情况下,从电源到,LDO,输出路径上的电容耦合效应迅速增强,当,Vin=4.2V, Iout=10mA,时,频率为,100Hz,时的,PSRR,为,54dB,,随着电源电压减小,,PSRR,减小,这是由于环路增益也随电源电压下降,30,2024/8/28,设计实例Frequency responsepower s,设计实例,Transient response,典型的,LDO,负载瞬态响应,与环路的相位裕度有关,与闭环带宽及调整管栅极,slew_rate,有关,31,2024/8/28,设计实例Transient response典型的LDO负载,设计实例,Transient responseESR effect,对于负载电流突变的情况,,ESR,电阻会对输出电压的瞬态变化产生一定影响,在同样的负载电流变化条件下,,ESR,电阻越大,输出电压的尖峰越大,本例中电压尖峰持续时间,200ns,32,2024/8/28,设计实例Transient responseESR eff,设计实例,Transient response,Load Transient,Line Transient,undershoot:132mv,;overshoot:82mv,overshoot:130mv;,undershoot:38mv,33,2024/8/28,设计实例Transient responseLoad Tra,设计实例,Transient response,瞬态性能增强电路 (,C_par100pF,),作用:,增强瞬态响应性能(,w:ov=79mv, wo:ov=893mv,),改善频率响应特性(,w:PM(300mA)=76, wo:PM(300mA)=30.5,),34,2024/8/28,设计实例Transient response瞬态性能增强电路,设计实例,温度特性,(TT:20ppm),功率效率,LDO,温度特性与基准电压温度特性和反馈网络温度特性密切相关,LDO,功率效率与输入电压和负载电流相关,输入电压越低,负载电流越大,效率越高,Other characteristics,35,2024/8/28,设计实例温度特性 (TT:20ppm)功率效率LDO温度特,参考文献,Ricon-mora, current efficient low voltage low dropout regulator.,Ka Chun Kwok, Pole-zero tracking frequency compensation for low dropout regulator, 2002 IEEE.,Ricon-mora, active capacitor multiplier in miller-compensated circuits, IEEE transactions on solid state circuits, Vol. 35, No. 1, January 2000.,Wei Chen, et al, Dual-loop feedback for fast low dropout regulators, 2001 IEEE.,Texas Instruments, Technical review of low dropout voltage regulator operation and performance, August 1999.,Chaitanya K. Chava, A frequency compensation scheme for LDO voltage regulators, IEEE Trans. On circuits and systems-1: regular papers, VOL. 51, No. 6, June, 2004.,36,2024/8/28,参考文献 Ricon-mora, current effi,参考文献,Thanks,Lai Xin Quan, et al, A 3-A CMOS low-dropout regulator with adaptive miller compensation, Analog Integr. Circ. Sig. Process, 2006, 49:5-10.,Hsuan-I Pan, et al, A CMOS low dropout regulator stable with any load capacitor, 2004 IEEE.,Akira Yamazaki, et al, A frequency compensation technique for variable output low dropout regulators, 2006 IEEE.,Ka Nang Leung, et al, A capacitor free CMOS low-dropout regulator with damping-factor-control frequency compensation, IEEE JSSC, Vol. 38, No. 10, October 2003.,37,2024/8/28,参考文献Thanks Lai Xin Quan, et al,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!