滚动轴承故障诊断new讲课ppt课件

上传人:20****08 文档编号:242472389 上传时间:2024-08-25 格式:PPTX 页数:65 大小:6.22MB
返回 下载 相关 举报
滚动轴承故障诊断new讲课ppt课件_第1页
第1页 / 共65页
滚动轴承故障诊断new讲课ppt课件_第2页
第2页 / 共65页
滚动轴承故障诊断new讲课ppt课件_第3页
第3页 / 共65页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2021/1/31,#,ISO10816-3,标准简介,4. 机器分类,在本国际标准中振动烈度按如下参数分类:,机器类型,额定功率或转轴高度,支承系统刚度,ISO10816-3标准简介4. 机器分类,1,ISO10816-3,标准简介,4.1按机器类型,额定功率或转轴高度分类,由于设计,轴承的类型及支承结构的显著区别需将机器分类成不同的组:,第1组,额定功率大于300,KW,但不超过50,MW,的大型机器;转轴高度大于315毫米的电机。,这类机器通常具有套筒轴承。运行范围或额定转速相对比较宽,其范围从,120,至,15000,转/分。,ISO10816-3标准简介4.1按机器类型,额定功率或转轴,2,ISO10816-3,标准简介,4.1按机器类型,额定功率或转轴高度分类,由于设计,轴承的类型及支承结构的显著区别需将机器分类成不同的组:,第2组,中等大小机器,其额定功率大于15,KW,至300,KW(,包括300,KW);,转轴高度:160毫米,H,315,毫米的电机。,这类机器通常采用滚动轴承并且运转转速超过,600,转/分。,ISO10816-3标准简介4.1按机器类型,额定功率或转轴,3,ISO10816-3,标准简介,4.1按机器类型,额定功率或转轴高度分类,由于设计,轴承的类型及支承结构的显著区别需将机器分类成不同的组:,第3组 泵-离心式,混流式或轴流式/其额定功率大于15,KW。,这类机器通常采用套筒轴承或滚动轴承。,这几类机器可具有水平,垂直或倾斜轴并且可安装在刚性或柔性支承上。,ISO10816-3标准简介4.1按机器类型,额定功率或转轴,4,ISO10816-3,标准简介,4.2按支承柔度分类,通常有两种类型用于对指定方向上的支承部件柔度分类。,刚性支承,柔性支承,这些支承条件取决于机器与基础柔度之间的相互关系。如在测量方向上机器与支承系统组合的,最低自振频率,至少大于,主激振频率,(在绝大多数情况下为旋转频率),25%,,,则支承系统在该方向上可看作,刚性支承,。所有的其它支承系统都可看作,柔性支承系统,。,ISO10816-3标准简介4.2按支承柔度分类,5,ISO10816-3,标准简介,5评定,ISO10816/1,提供了对各种类型机器振动烈度评估的,两条评定准则,的总的描述。,第一条准则,考虑所观察的,宽频带振动的幅值,,,第二条准则,考虑,幅值的变化,,无论它们是增大还是减小。,ISO10816-3标准简介5评定,6,ISO10816-3,标准简介,对下列评价区域的确定。则可对给定的机器的振动作定性的评估,并对可能采取的措施提供指南。,区域,A,新交付使用的机器的振动通常落在该区域。,区域,B,机器振动处在该区域通常可考虑无限长时间运行,。,区域,C,机器振动处在该区域一般考虑不适宜作长时间连续运行,通常应当在此状态下运行有限时间至一合适的机会进行维修。,区域,D,机器振动处在该区域通常考虑其振动烈度足以导致机器损坏。,ISO10816-3标准简介,7,根据滚动轴承的运动关系式计算得到各项特征频率,在频谱图中找出、观察其变化,从而判别故障的存在与部位。,图732(a) 吐丝机06年4月25日4:00时域波形图,对于转轴上的零件为齿轮等非转子类零件的轴而言,其动不平衡量是不随时间变化的。,35Hz及内圈故障频率为26.,有与部件有关的振动,也有与制造质量有关的振动,还有与轴承装配以及工作状态有关的振动。,当轴承运转时,滚动体便在内外圈之间滚动。,滚动轴承原故障信号弱,并不意味常规的FFT信号分析技术对滚动轴承的故障诊断束手无策。,根据滚动轴承的运动关系式计算得到各项特征频率,在频谱图中找出、观察其变化,从而判别故障的存在与部位。,率的衰减振荡,表现为每一个脉冲的衰,7-1滚动轴承的_通常用来作为诊断的依据。,载荷过大时会在滚道表面形成塑性变形凹坑。,如在测量方向上机器与支承系统组合的最低自振频率至少大于主激振频率(在绝大多数情况下为旋转频率)25%,则支承系统在该方向上可看作刚性支承。,201m/s,比5月9日幅值又有所上升,说明吐丝机II轴轴承已严重损坏,从而导致II轴轴频幅值持续上升。,式中,n内圈转速(r/min),z滚动体个数,有与部件有关的振动,也有与制造质量有关的振动,还有与轴承装配以及工作状态有关的振动。,ISO10816-3,标准简介,本限制值用于,频率范围从10至100赫兹,,或对,低转速机器,为从,2至1000赫兹,的,宽带振动速度与振动位移的有效值,。,根据滚动轴承的运动关系式计算得到各项特征频率,在频谱图中找出,8,ISO10816-3,标准简介,本限制值用于,频率范围从10至100赫兹,,或对,低转速机器,为从,2至1000赫兹,的,宽带振动速度与振动位移的有效值,。,ISO10816-3标准简介本限制值用于频率范围从10至10,9,ISO10816-3,标准简介,本限制值用于,频率范围从10至100赫兹,,或对,低转速机器,为从,2至1000赫兹,的,宽带振动速度与振动位移的有效值,。,ISO10816-3标准简介本限制值用于频率范围从10至10,10,轴承温升要求,轴承的正常温度因机器的热容量、散热量、转速及负载而不同。如果润滑、安装不合适,则轴承温度会急骤上升,出现异常高温,这时必须停止运转,采取必要的防范措施。参照输送的介质温度,旋转机械运转达到稳定状态后轴承温度应符合标准(,JB/T8664-1997 4.14,),轴承温升不得超过环境温度,35,,最高温度不得超过,80,。如设备说明书有特别要求,可参照说明书的要求执行。,轴承温升要求轴承的正常温度因机器的热容量、散热量、转速及负载,11,1 滚动轴承的失效形式,1,.滚动轴承的磨损失效,磨损是滚动轴承最常见的一种失效形式。,在滚动轴承运转中,滚动体和套圈之间均存在滑动,这些滑动会引起零件接触面的磨损。尤其在轴承中侵入金属粉末、氧化物以及其他硬质颗粒时,则形成严重的磨料磨损,使之更为加剧。,另外,由于振动和磨料的共同作用,对于处在非旋转状态的滚动轴承,会在套圈上形成与钢球节距相同的凹坑,即为,摩擦腐蚀,现象。,如果轴承与座孔或轴颈配合太松,在运行中引起的相对运动,又会造成轴承座孔或轴径的磨损。,当磨损量较大时,轴承便产生游隙噪声,振动增大。,1 滚动轴承的失效形式1.滚动轴承的磨损失效,12,2,. 滚动轴承的疲劳失效,在滚动轴承中,滚动体或套圈滚动表面由于接触载荷的反复作用,表层因反复的弹性变形而致冷作硬化,下层的材料应力与表层出现断层状分布,导致从表面下形成细小裂纹,随着以后的持续负荷运转,裂纹逐步发展到表面,致使材料表面的裂纹相互贯通,直至金属表层产生片状或点坑状剥落。轴承的这种失效形式称为,疲劳失效,。,随着滚动轴承的继续运转,损坏逐步增大。因为脱落的碎片被滚压在其余部分滚道上,并给那里造成局部超载荷而进一步使滚道损坏。,轴承运转时,一旦发生疲劳剥落,其振动和噪声将急剧恶化。,2. 滚动轴承的疲劳失效,13,3,. 滚动轴承的腐蚀失效,轴承零件表面的腐蚀分三种类型。,a.,化学腐蚀,,当水、酸等进入轴承或者使用含酸的润滑剂,都会产生这种腐蚀。,b.,电腐蚀,,由于轴承表面间有较大电流通过使表面产生点蚀。,c.,微振腐蚀,,为轴承套圈在机座座孔中或轴颈上的微小相对运动所至。结果使套圈表面产生红色(Fe,2,O,3,)或黑色的锈斑。轴承的腐蚀斑则是以后损坏的起点。,3. 滚动轴承的腐蚀失效,14,4,. 滚动轴承的塑变失效,压痕主要是由于滚动轴承受负荷后,在滚动体和滚道接触处产生塑性变形。载荷过大时会在滚道表面形成塑性变形凹坑。另外,若装配不当,也会由于过载或撞击造成表面局部凹陷。或者由于装配敲击,而在滚道上造成压痕。,5,. 滚动轴承的断裂失效,造成轴承零件的破断和裂纹的重要原因是由于运行时载荷过大、转速过高、润滑不良或装配不善而产生过大的热应力,也有的是由于磨削或热处理不当而导致的。,4. 滚动轴承的塑变失效,15,6,. 滚动轴承的胶合失效,滑动接触的两个表面,当一个表面上的金属粘附到另一个表面上的现象称为,胶合,。,对于滚动轴承,当滚动体在保持架内被卡住或者润滑不足、速度过高造成摩擦热过大,使保持架的材料粘附到滚子上而形成胶合。其胶合状为螺旋形污斑状。还有的是由于安装的初间隙过小,热膨胀引起滚动体与内外圈挤压,致使在轴承的滚道中产生胶合和剥落。,6. 滚动轴承的胶合失效,16,故障信号频率 (Hz),图77为204型轴承加了30N轴向力,在试验装置上进行测试分析的结果。,结果使套圈表面产生红色(Fe2O3)或黑色的锈斑。,7-8滚动轴承有哪些特征频率?其计算公式分别是什么?,引起滚动轴承振动的因素很多。,滚动轴承内出现剥落等缺陷,滚动,因为冲击波峰的振幅大,并且持续时间短。,ISO10816-3标准简介,介绍,轴承元件的固有频率在20K60K,5钢吐丝机II轴轴频幅值趋势图,冲击脉冲法是利用轴承故障所激发的轴承元件固有频率的振动信号,经加速度传感器的共振放大、带通滤波及包络检波等信号处理,所获得的信号振幅正比于冲击力的大小。,5以上,轴承在正常状态下的峰值系数为5左右,说明吐丝机在4月13日时已有故障隐患了,到5月25日后吐丝机a35测点峰值系数又降到5以下,说明此时轴承到已经损坏了。,1、根据以上分析,一炼轧厂吐丝机有以下两方面的故障征兆。,滚动轴承的特征频率(内圈旋转,外圈固定时),ISO10816-3标准简介,二滚动轴承的振动机理与信号特征,引起滚动轴承振动的因素很多。有与部件有关的振动,也有与制造质量有关的振动,还有与轴承装配以及工作状态有关的振动。,如图,7,1,所示,我们通过对轴承振动的剖析,找出激励特点,并通过不同的检测分析方法的研究,从振动信号中,获取振源的可靠信息,用以进行滚动轴承的故障诊断。,图,7,1,滚动轴承振动的时域信号,(,a),新轴承的振动波形,(b),表面劣化后的轴承振动波形,故障信号频率 (Hz)二滚动轴承的振动机理与信号特征引,17,1.,轴承刚度变化引起的振动,当滚动轴承在恒定载荷下运转时,(,如图,7,2),,由于其轴承和结构所决,定,使系统内的载荷分布状况呈现周,期性变化。如滚动体与外圈的接触点,的变化,使系统的刚度参数形成周期,的变化,而且是一种对称周期变化,,从而使其恢复力呈现非线性的特征。,由此便产生了,分数谐波振动,。,此外,当滚动体处于载荷下非对,称位置时,转轴的中心不仅有垂直方向的,而且还有水平方向的移动。这,类参数的变化与运动都将引起轴承的振动,也就是随着轴的转动,滚动体,通过径向载荷处即产生,激振力,。,这样在滚动轴承运转时,由于刚度参数形成的周期变化和滚动体产生,的激振力及系统存在非线性,便产生多次谐波振动并含有分谐波成分,不,管滚动轴承正常与否,这种振动,都要发生,。,图,7,2,滚动轴承刚度的变化,1. 轴承刚度变化引起的振动 图72滚动轴承刚度的变化,18,2.,由滚动轴承的运动副引起的振动,当轴承运转时,滚动体便在内外圈之间滚动。轴承的滚动表面虽加工得非常平滑,但从微观来看,仍高低不平,特别是材料表面产生疲劳斑剥时,高低不平的情况更为严重。滚动体在这些凹凸面上转动,则产生交变的激振力。所产生的振动,既是随机的,又含有滚动体的传输振动,其主要频率成分为滚动轴承的特征频率。,滚动轴承的,特征频率,(,即接触激发的基频,),,完全可以根据轴承元件之间滚动接触的速度关系建立的方程求得。计算的特征频率值往往十分接近测量数值,所以在诊断前总是先算出这些值,作为诊断的依据。,2. 由滚动轴承的运动副引起的振动,19,9Hz上出现了谐波共振现象。,ISO10816-3标准简介,低频段:在8kHz以下,滚动轴承中与结构和运动关系相联系的故障信号在这个频率段,少数高速滚动轴承的信号频段能延展到B点以外。,轴承的这种失效形式称为疲劳失效。,滚动轴承原故障信号弱,并不意味常规的FFT信号分析技术对滚动轴承的故障诊断束手无策。,当轴的转频振动幅值再次降低时,滚动轴承故障已进入晚期,到了必需更换的程度。,滚动轴承故障信号分析方法,II轴(高速轴)转动频率的振幅为0.,2) 保持架旋转频率2:,轴承缺陷所激发的周期性脉冲的频率与轴承结构和运动关系相联系,处于振动信号的低频段内,在这个频段内还有轴的振动、齿轮的啮合振动等各种零件的振动。,激发两种性质的振动。,轴承元件的固有频率取决于本身的,式中,n内圈转速(r/min),z滚动体个数,有与部件有关的振动,也有与制造质量有关的振动,还有与轴承装配以及工作状态有关的振动。,*当轴承故障进入晚期,由于剥落斑点充满整个滚道,峭度指标反而下降。,滚动轴承的特征频率(内圈旋转,外圈固定时),1),内圈旋转频率,1,:,Hz,2),保持架旋转频率,2,:,3,) 滚动体自转频率,3,:,4,) 保持架过内圈频率,4,:,5,) 滚动体通过内圈频率,5,:,6,) 滚动体通过外圈频率,6,:,式中,n内圈转速(r/min),z滚动体个数,在故障诊断的实践中,内圈旋转频率,1,、滚动体通过内圈频率,5,、滚,动体通过外圈频率,6,对表面缺陷有较高的敏感度,是重要的参照指标。,图,73,向心推力球轴承结构简图,(内圈旋转,外圈固定),9Hz上出现了谐波共振现象。滚动轴承的特征频率(内圈旋转,外,20,图,7,4,滚动轴承内缺陷所激发的振动波形,3.,滚动轴承的早期缺陷所激发的振动特征,滚动轴承内出现剥落等缺陷,滚动,体以较高的速度从缺陷上通过时,必然,激发两种性质的振动。见图,7,4,,,第一类,振动是上节所讲的以结构和运动关,系为特征的振动,表现为冲击振动的周,期性;,第二类,振动是,被激发的以轴承元件固有频,率的衰减振荡,表现为每一个脉冲的衰,减振荡波。,轴承元件的固有频率取决于本身的,材料、结构形式和质量,根据某些资料,介绍,轴承元件的固有频率在,20K,60K,Hz,的频率段。因此,有些轴承诊断仪,就,针对这一特点进行信号分析处理,在这一频段内工作的仪表。,图74 滚动轴承内缺陷所激发的振动波形3. 滚动轴承的早期,21,利用低频段信号诊断轴承故障的要点,轴承缺陷所激发的周期性脉冲的频率与轴承结构和运动关系相联系,处于振动信号的低频段内,在这个频段内还有轴的振动、齿轮的啮合振动等各种零件的振动。,由于这些振动具有更强的能量,,轴承早期,缺陷所激发的微弱周期性脉冲信号往往,淹没,在这些强振信号中,给在线故障监测系统带来困难,但是,滚动轴承故障在低频段的特征还是可以得到的。,因为滚动轴承在机器设备中的作用是支撑传动轴的旋转,所以滚动轴承故障所激发的振动必然对轴及轴上的机械零件产生影响。,对于转轴上的零件为齿轮等非转子类零件的轴而言,其,动不平衡量,是不随时间变化的。滚动轴承影响到轴的,空间定位,,轴承故障将使轴的空间定位出现波动,当轴的工作状态处于非重载时,轴的转频振动幅值升高,有时还表现为转频的,2X,、,3X,5X,频率的振幅升高。这种情况往往预示着滚动轴承出现,早期故障,。当轴的转频振动幅值,再次降低,时,滚动轴承故障已进入晚期,到了必需更换的程度。,利用低频段信号诊断轴承故障的要点轴承缺陷所激发的周期性脉冲的,22,三,滚动轴承信号分析方法,轴承故障信号的拾取实际上是传感器及安装部位和感应频率段的选择,。传感器的安装部位往往选择轴承座部位,并按信号传动的方向选择,垂直、水平、轴向,布置。这里距故障信号源最近,传输损失最小,也是轴、齿轮等故障信号传输路径必经的最近位置。所以几乎所有的在线故障监测与诊断系统都选择轴承座作为传感器的安装部位。,由于轴的空间位置波动,也必然影响齿轮等零件的振动。,很微弱,,几乎看不见。,三 滚动轴承信号分析方法轴承故障信号的拾取实际上是传感,23,图,7,5,滚动轴承的振动频谱,传感器和感应频率段的选择,轴承故障信号分布的频段,传感器和感应频率段的选择,如图,7,5,所示,这是一个航空轴承通过故障实验得到的频谱图。轴承的故障信号分布在3个频段,即图中,阴影,部分。,图75 滚动轴承的振动频谱传感器和感应频率段的选择轴承故,24,a).,低频段:,在,8,k,Hz,以下,滚动轴承中与结构和运动关系相联系的故障信号在这个频率段,少数高速滚动轴承的信号频段能延展到,B,点以外。因为,轴,的故障信号、,齿轮,的故障信号也在这个频段,因而这也是,绝大部分在线故障监测与诊断系统所监测的频段,。,b).,高频段:,位于,区,这个频段的信号是轴承故障所激发的,轴承自振频率,的振动。,c).,超高频段:,位于,区,它们是轴承内微裂纹扩张所产生的声发射超声波信号。,a). 低频段:在8kHz以下,滚动轴承中与结构和运动关系相,25,信号拾取方式:,针对不同的信号所处频段,需采用不同的信号拾取方式。,a)监测低频段的信号,,通常采用,加速度,传感器,由于同时也要拾取其它零件的故障信号,因此采用通用的信号处理电路(仪器)。,b)监测高频段的信号,,其目的是要获取唯一的轴承故障信号,采用自振频率在,25,30KHz,的,加速度,传感器,利用加速度传感器的共振效应,将这个频段的轴承故障信号放大,再用带通滤波器将其它频率的信号(主要是低频信号)滤除,获得,唯一,的轴承故障信号。,c)监测超高频段的信号,,则采用超声波传感器,将,声发射,信号检出并放大。仪表统计,单位时间内声发射信号的频度和强度,,一旦频度或强度超过某个报警限,则判定轴承故障。,信号拾取方式:,26,滚动轴承故障信号分析方法,1,有效值与峰值判别法,有效值:,滚动,轴承振动信号的有效值,反映了振动的能量大小,当轴承产生异常后,其振动必然增大。因而可以用,有效值,作为轴承异常的判断指标。,峰值:,有效值指标对,具有瞬间冲击振动,的异常是不适用的。因为冲击波峰的振幅大,并且持续时间短。用有效值来表示故障特征,其特征并不明显,对于这种形态异常的故障特征,用,峰值,比有效值更适用。,2,峰值系数法,所谓,峰值系数,,是指峰值与有效值之比。,用峰值系数进行诊断的最大特点,是由于它的值不受轴承尺寸、转速及负荷的影响。,正常时,,滚动轴承的峰值系数约为,5,,当轴承有,故障时,,可达到几十。,轴承正常、异常的判定可以很方便判别,。,另外,峰值系数不受振动信号的绝对水平所左右。测量系统的灵敏度即使变动,对示值也不会产生多大影响。,滚动轴承故障信号分析方法1有效值与峰值判别法,27,3,峭度指标法,峭度指标,C,q,反映振动信号中的冲击特征。,峭度指标,C,q,峭度指标,C,q,对信号中的冲击特征很敏感,正常情况下其值应该在,3,左右,如果这个值接近,4,或超过,4,,则说明机械的运动状况中存在冲击性振动。,*,当轴承出现,初期故障时,,有效值变化不大,但峭度指标值已经明显增加,达到数十甚至上百,非常明显。它的优势在于能提供,早期的故障预报,。,*,当轴承,故障进入晚期,,由于,剥落斑点充满整个滚道,,峭度指标反而下降。也就是对晚期故障,不适应,。,3峭度指标法,28,4,冲击脉冲法(,SPM,),冲击脉冲法,是利用轴承故障所激发的轴承元件固有频率的振动信号,经加速度传感器的共振放大、带通滤波及包络检波等信号处理,所获得的信号振幅正比于冲击力的大小。,在冲击脉冲技术中,所测信号振幅的计量单位是,dB,。测到的轴承冲击,dB,i,值与轴承基准值,dB,0,相减(,dB,0,是良好轴承的测定值)。,dB,N,= dB,i,dB,0,冲击脉冲计的刻度就是用,dB,N,值表示的。轴承的状况分为三个区:,(,0,20,),dB,N,表示轴承状况良好,(,20,35,),dB,N,表示轴承状况已经劣化,属发展中的损伤期,(,35,60,),dB,N,表示轴承已经存在明显的损伤。,4冲击脉冲法(SPM),29,图,76,共振解调法的信号变换过程,5,共振解调法,共振解调法也称为包络检波频谱分析法,,是目前滚动轴承故障诊断中最常用的方法之一,。,共振解调法的基本原理可用图,76,所示信号变换过程中的波形特征来说明。,图,(a),为理想的故障微冲击脉冲信号,F(t),(原始脉冲波),它在时域上的脉宽极窄,幅值很小,而脉冲的频率成分很丰富。虽然这种脉冲是以,T,为周期,但,在频谱上却直接反映不出对应的频率,1,T,成分,。,图76 共振解调法的信号变换过程5共振解调法,30,图,(b),是脉冲信号由传感器接收后,经过电子高频谐振器谐振,产生的一组组,共振响应波,。这是一种振幅被放大了的高频自由衰减振荡波,振荡频率就是谐振器的,谐振频率,n,(,n,=1/T,n,),,它的最大振幅与故障冲击的强度成正比,而且每组振荡波在时域上得到了展宽,,振荡波的重复频率与故障冲击的重复频率相同,。,图,(c),为振荡波经过,绝对值处理,后留下了对应的频率,但它还不是完全的周期信号,在频谱上不能形成简单波形那样的离散谱线。,图(d)为对图(c)所示振荡波再进行,包络检波,处理后的波形,也就是取振荡波形的,包络线,。这个包络波形就把高频成分和其他机械干扰频率剔除掉了,成为,纯低频的周期波,,波的周期,T,仍与原始冲击频率相对应,图(e)为将图(d)所示的纯低周期包络波作为新的振动波形进行频谱分析,获得明显的冲击频率及其谐波成分的频谱分析图。,图(b)是脉冲信号由传感器接收后,经过电子高频谐振器谐振,产,31,图,7,7,两种信号处理方法比较,例:共振解调法(包络检波频谱分析法),实现包络检波的方法有多种,常用的有两种方法:,希尔伯特,(Hilbett),变换法,和,检波滤波法,。,图,77,为,204,型轴承加了,30N,轴向力,在试验装置上进行测试分析的结果。图,77(a),为原信号直接用低频信号接收法得到的频谱,图中谱峰密集,较难寻找出故障的特征频率。,图,77(b),为经过包络检波后的频谱图,清楚地显示出故障的特征频率,其中,91.25Hz,是轴承外圈的间隔频率,(,理论计算值为,92.5Hz),,,145Hz,、,290Hz,和,436Hz,是内圈的间隔频率及其谐波。,该轴承的实际故障,是内、外滚道表面上各有一处疲劳剥落。,图77 两种信号处理方法比较例:共振解调法(包络检波频谱分,32,6,频谱分析法,将低频段测得振动信号,经低通抗叠混滤波器后,进行,FFT,快速富里叶变换,得到频谱图。,根据滚动轴承的运动关系式计算得到各项特征频率,在频谱图中找出、观察其变化,从而判别故障的存在与部位。,需要说明的是,各种特征频率都是从理论上推导出来的,而实际上,由于轴承的各几何尺寸会有误差,加上轴承安装后的变形、,FFT,计算误差等因素,使得实际的频率与计算所得的频率会有某些出入,所以在频谱图上寻找各特征频率时,需在计算的频率值上找其近似的值来作诊断。,6频谱分析法,33,图,7,8,故障轴承与完好轴承的频谱图对比,a)故障轴承,b)完好轴承,例如,图,7,8a,,是一个外环有划伤的轴承频谱图,明显看出其频谱中有较大的周期成分,其基频为,184.2Hz,。,图,78b,是与该轴承同型号的完好轴承的频谱图。通过比较可以看出,当出现故障后频谱图上有较高阶谐波。,在此例中出现了,184.2Hz,的,5,阶谐波。且在,736.9Hz,上出现了谐波共振现象。,需要指出的是,图,7,8,是一个在实验室作出的图形。实际工业现场的信号是极复杂的,包含了诸多轴、齿轮等强振信号,而滚动轴承的故障信号因为强度太小,而被淹没。只有机构相对简单的机械(如低转速的水泵)才能复现与图,7,8,相似的频谱图。,图78 故障轴承与完好轴承的频谱图对比例如,图78a,是,34,滚动轴承原故障信号弱,并不意味常规的,F,F,T,信号分析技术对滚动轴承的故障诊断束手无策。我们都知道滚动轴承以其尺寸精度固定了转轴的,轴心空间位置,,一旦滚动轴承内的故障引发振动,必然影响转轴的轴心位置,导致对应,轴转动频率的振幅加大,,若能排除轴上其他零件的原因(例如齿轮的,转子不平衡力是不随时间变化的,),即可诊断出轴承故障。,轴上的齿轮等零件的振动也会受到轴承振动的影响,导致自身的振动出现幅值增大,,谐频成分增多,的现象。,滚动轴承原故障信号弱,并不意味常规的FFT信号分析技术,35,7,倒频谱分析法,对于一个复杂的振动情况,其谐波成分更加,复杂而密集,,仅仅去观察其频谱图,可能什么也辨认不出。这是由于各运动件在力的相互作用下各自形成特有的特征频率,并且,相互叠加与调制,,因此在频谱图上则形成,多族谐波,成分,如果应用倒频谱则较易于识别。,倒频谱,:对于存在调频、调幅现象的信号,其功率谱上会出现周期分量或等间隔的旁瓣,利用倒谱分析方法,对功率谱上的周期分量进行再处理,找出功率谱上不易发现的问题。,处理过程:,离散信号序列x,i,FFT,变换,功率谱S f ,求对数lgS(f),求逆傅里叶变换,F,-1,lgS(f),得到倒谱C(),C()=F,-1,lgS(f),7倒频谱分析法离散信号序列xiFFT变换功率谱S f,36,例:,图,79a,,是内圈轨道上有疲劳损伤和滚子有凹坑缺陷轴承的振动时间历程。,图,79b,则是其频谱图,该图不便识别。,图,79c,是其倒频谱,明显看出有,106Hz,及,26.39Hz,成分,理论计算上滚子故障频率为,106.35Hz,及内圈故障频率为,26.35Hz,,在此看出,倒频谱反映出的故障频率与理论几乎完全一致。,在滚动轴承故障信号分析中,由于存在着明显的调制现象,并在频谱图中形成不同族的,调制边带,。,*当内圈有故障时是则内圈故障频率构成调制边带;,*当滚子有故障时,则又以滚子故障频率构成另一族调制边带。,因此轴承故障的倒频谱诊断方法可以提供有效的预报信息。,例:,37,图,7,9,倒频谱分析的有效性示意图,图79 倒频谱分析的有效性示意图,38,四,滚动轴承故障诊断案例,四 滚动轴承故障诊断案例,39,图726,吐丝机传动简图,滚动轴承故障诊断案例,2006,年,6,月,27,日,某,钢铁公司高速线材轧制线上的吐丝机,轴发,生轴承碎裂事故,被迫停产检修。事后检视在线故障诊断监测系统,发,现早在,4,月,13,日时域峰值指标状态监测已经发出红色警报。图,7,26,是吐,丝机传动简图。,作为事后调查,欲对所有故障监测指标作一下回顾,以便认识哪些,指标对这类故障信息敏感。所以将各项时域监测指标列举分析如下:,图726 吐丝机传动简图滚动轴承故障诊断案例200,40,1,、时域指标趋势分析,(1) 6.5,钢吐丝机,a35,测点峰值趋势图,由图,7,27,可见,在,2,6,月份轧,6.5,钢时,吐丝机,a35,测点时域峰,值从,4,月,13,日(,50 m/s,)开始有所上升,到,4,月,25,日达到,85 m/s,,此,后到,5,月,6,日已达到,260 m/s,以上,并且到吐丝机轴承出现损坏事故前,在线系统一直连续出现红色警报(均在,200 m/s,以上)。,图727 峰值指标趋势图,1、时域指标趋势分析(1) 6.5钢吐丝机a35测点峰值,41,(2),轧,6.5,钢吐丝机,a35,水平测点峰值系数趋势图,由图,7,28,可见,在,2,6,月份轧,6.5,钢时,吐丝机,a35,水平测点峰值系数在,4,月,13,日之前维持在,5,以下,到,4,月,16,日达到,10,,此后到,5,月,25,日之间一直维持在,6.5,以上,轴承在正常状态下的峰值系数为,5,左右,说明吐丝机在,4,月,13,日时已有故障隐患了,到,5,月,25,日后吐丝机,a35,测点峰值系数又降到,5,以下,说明此时轴承到已经损坏了。,图728 峰,值,系数趋势图,(2) 轧6.5钢吐丝机a35水平测点峰值系数趋势图图7,42,(3),轧,6.5,钢吐丝机,a35,测点峭度指标趋势图,由图,7,29,可见,在,2,6,月份轧,6.5,钢时,吐丝机,a35,测点峭度在,4,月,13,日之前维持在,5,以下,到,4,月,16,日达到,14,,此后到,5,月,25,日之间一直维持在,6.5,以上,轴承在正常状态下的峭度为,3,左右,说明吐丝机在,4,月,13,日(,9.4,)时已有故障隐患了,到,5,月,25,日后吐丝机,a35,测点峭度又降到,5,以下,说明此时轴承到已经损坏了。,由以上分析可见,从峰值、峰值系数、峭度三个时域指标都可看出吐丝机轴承在,4,月,13,日时已有故障隐患了,在,5,月初到,5,月,25,日是轴承逐渐损坏时期,若在这个时期能够对吐丝机进行必要的检查,就可避免,6,月,27,日轴承碎裂事故的发生。,图729 峭度指标趋势图,(3) 轧6.5钢吐丝机a35测点峭度指标趋势图图729,43,2,、频域指标趋势分析,轧,6.5,钢吐丝机,II,轴轴频幅值趋势图,由图,7,30,可见,在,2,6,月份轧,6.5,钢时,吐丝机,II,轴转动频率的幅值在,4,月,24,日之前维持在,0.25,m/s,2,以下,,4,月,24,日开始上升,达到,0.4,m/s,2,,到,5,月,6,日达到,9.659,m/s,2,,此后到,6,月,27,日之间一直维持在,8.5,m/s,2,以上,,6,月,6,日最高达到,30.82,m/s,2,,说明吐丝机在,4,月,24,日(,0.4,)时已有故障隐患了,到,5,月,6,日幅值发生突变,增大了,20,多倍,说明此时吐丝机轴承已经损坏了。,图730,II,轴轴频幅值趋势图,2、频域指标趋势分析轧6.5钢吐丝机II轴轴频幅值趋势图,44,3,、谱图分析,(1),a35,测点正常时的时域波形及频谱图(轧,6.5,钢),图731,(a),吐丝机,06,年,3,月,9,日,19,:,00,时域波形图,3、谱图分析(1)a35测点正常时的时域波形及频谱图(轧6,45,图731,(b),吐丝机,06,年,3,月,9,日,19,:,00,频域波形图,图731(b) 吐丝机06年3月9日19:00频域波形图,46,特征频率表1,特征频率表,1,(图,7,31,轧,6.5,钢时转速:,1071r/min,) 吐丝机,a35,测点谱图数据,),图,7,31,显示为吐丝机,3,月,9,日,19,:,00,的时域和频域波形图,吐丝机,II,轴(高速轴)转动频率的振幅为,0.151,m/s,,并且,II,轴轴频的,2,、,5,、,7,倍频的振幅较为突出(见特征频率表,1,),这时,II,轴已有轻微松动故障了。由于振幅相对很低,不易看出。,序号,故障信号频率,(Hz),计算特征频率,(Hz),振幅,绝对误差,(,Hz),相对误差,%,可信度,%,故障部位及,性质分析,1,29.297,30.665,0.151,1.368,4.46,90,II,轴转动频率,2,58.594,61.33,0.948,2.736,4.46,90,2,II,轴转动频率,3,92.773,91.995,0.63,0.778,0.85,100,3,II,轴转动频率,4,151.367,153.325,1.179,1.958,1.28,100,5,II,轴转动频率,5,205.078,214.655,1.916,9.577,4.46,90,7,II,轴转动频率,特征频率表1特征频率表1(图731 轧6.5钢时转速,47,(2),a35,测点峰值明显上升时的时域波形及频谱图,(,轧,6.5,钢,),图732,(a),吐丝机,06,年,4,月,25,日,4,:,00,时域波形图,(2)a35测点峰值明显上升时的时域波形及频谱图(轧6.,48,图732,(b),吐丝机,06,年,4,月,25,日,4,:,00,频域波形图,图732(b) 吐丝机06年4月25日4:00频域波形图,49,4)时已有故障隐患了,到5月6日幅值发生突变,增大了20多倍,说明此时吐丝机轴承已经损坏了。,微振腐蚀,为轴承套圈在机座座孔中或轴颈上的微小相对运动所至。,生轴承碎裂事故,被迫停产检修。,倒频谱:对于存在调频、调幅现象的信号,其功率谱上会出现周期分量或等间隔的旁瓣,利用倒谱分析方法,对功率谱上的周期分量进行再处理,找出功率谱上不易发现的问题。,ISO10816-3标准简介,微振腐蚀,为轴承套圈在机座座孔中或轴颈上的微小相对运动所至。,计算特征频率 (Hz),因为滚动轴承在机器设备中的作用是支撑传动轴的旋转,所以滚动轴承故障所激发的振动必然对轴及轴上的机械零件产生影响。,图79 倒频谱分析的有效性示意图,第一类振动是上节所讲的以结构和运动关,这种情况往往预示着滚动轴承出现早期故障。,7-1滚动轴承的_通常用来作为诊断的依据。,例如,图78a,是一个外环有划伤的轴承频谱图,明显看出其频谱中有较大的周期成分,其基频为184.,(如图72),由于其轴承和结构所决,附图:轴承(型号10284776)损坏照片如下:,特征频率表2,特征频率表,2,(图,7,32,轧,6.5,钢时转速:,1052r/min,) 吐丝机,a35,测点谱图数据,),图,7,32,显示为吐丝机,4,月,25,日,4,:,00,的时域和频域波形图,吐丝机,II,轴(高速轴)转动频率的振幅为,0.386m/s,,并且,II,轴轴频的,2,、,5,、,7,倍频幅值较为突出(见特征频率表,2,),与,3,月,9,日波形图相比,,II,轴(高速轴)轴转动频率的振幅上升了,2,倍多,且,II,轴转动频率的,2,、,5,、,7,倍频幅值也相对上升了,表明吐丝机,II,轴松动故障在逐渐加重。,序号,故障信号频率,(Hz),计算特征频率,(Hz),振幅,绝对误差,(,Hz),相对误差,%,可信度,%,故障部位及,性质分析,1,29.297,30.121,0.386,0.824,2.73,100,II,轴转动频率,2,58.594,60.242,1.026,1.648,2.73,100,2,II,轴转动频率,3,87.891,90.363,0.639,2.472,2.73,100,3,II,轴转动频率,4,151.367,150.605,0.948,0.762,5.06,90,5,II,轴转动频率,5,205.078,210.847,2.226,5.769,2.73,100,7,II,轴转动频率,4)时已有故障隐患了,到5月6日幅值发生突变,增大了20多倍,50,(3),a35,测点峰值上升非常大时的时域波形及频谱图,(,轧,6.5,钢,),图733,吐丝机,06,年,5,月,6,日,10,:,00,时域和频域波形图,(3)a35测点峰值上升非常大时的时域波形及频谱图(轧6,51,特征频率表3,特征频率表,3,(图,7,33,轧,6.5,钢时转速:,1063r/min,) 吐丝机,a35,测点谱图数据,),图,7,33,显示为吐丝机,5,月,6,日,10,:,00,的时域和频域波形图,吐丝机,II,轴(高速轴)转动频率的振幅为,9.659m/s,,并伴有,II,轴转动频率的,2,、,3,倍频振幅较为突出(见特征频率表,3,),与,4,月,25,日波形图相比,,II,轴(高速轴)轴转动频率振幅上升了,20,多倍,且,II,轴转动频率的,2,、,3,倍频振幅也相对上升了,表明吐丝机,II,轴上轴承已经损坏了。,这个时间距轴承破碎还有,40,多天,而且频谱图上已有极明显的故障征兆。低频段升高,20,倍,使高频振幅都压下去了。在此期间处理,完全可以避免事故发生。,序号,故障信号频率,(Hz),计算特征频率,(Hz),振幅,绝对误差,(,Hz),相对误差,%,可信度,%,故障部位及,性质分析,1,29.297,30.436,9.659,1.139,3.74,100,II,轴转动频率,2,58.594,60.872,3.521,2.278,3.74,100,2,II,轴转动频率,3,87.891,91.308,2.773,3.417,3.74,100,3,II,轴转动频率,特征频率表3特征频率表3(图733 轧6.5钢时转速:,52,(4),吐丝机轴承碎裂当天的时域波形及频谱图,(,轧,6.5,钢,),图734,吐丝机,06,年,6,月,27,日,06,:,51,时域和频域波形图,(4)吐丝机轴承碎裂当天的时域波形及频谱图(轧6.5钢),53,特征频率表4,特征频率表,4,(图,7,34,轧,6.5,钢时转速:,1084r/min,吐丝机,a35,测点谱图数据,),图,7,34,显示为吐丝机,6,月,27,日,06,:,51,的时域和频域波形图,吐丝机,II,轴(高速轴)转动频率幅值为,15.201m/s,比,5,月,9,日幅值又有所上升,说明吐丝机,II,轴轴承已严重损坏,从而导致,II,轴轴频幅值持续上升。,序号,故障信号频率,(Hz),计算特征频率,(Hz),振幅,绝对误差,(,Hz),相对误差,%,可信度,%,故障部位及,性质分析,1,29.297,31.038,15.201,1.741,5.61,90,II,轴转动频率,2,58.594,62.076,7.573,3.482,5.61,90,2,II,轴转动频率,特征频率表4 特征频率表4(图734 轧6.5钢时转速,54,4、诊断结论,1,、根据以上分析,一炼轧厂吐丝机有以下两方面的故障征兆。,(1),吐丝机,II,轴在初期(,3,、,4,月份)有轻微松动故障征兆,实质是,轴承定心,劣化。,(2),吐丝机,II,轴两端的轴承有损伤。,2,、吐丝机,II,轴有松动的故障特征,是由于在频域图中,II,轴转频,(,基频,),及其,2,、,5,、,7,倍频幅值在,2,、,3,月份较小,到,4,、,5,月份都有较大增长,与松动故障很吻合,尤其在轧小规格钢(,10mm,钢以下)时候更为突出。,3,、吐丝机,II,轴两端的轴承有损伤是由于在时域指标中峰值系数和峭度指标,2,、,3,月份都属于正常范围内,到,4,、,5,月份上升了几倍甚至十几倍,已远远超出了轴承正常运行的技术状态。,4,、吐丝机,II,轴两端的轴承损坏,表现为轴承在早期(,3,、,4,月份)与,II,轴之间配合间隙大而引起,II,轴出现松动故障,后期(,5,、,6,月份)轴承损坏主要表现为,II,轴转动频率振幅很高,而其,3,、,5,、,7,倍频幅值不再突出,频谱图与,3,、,4,月份明显不同。,4、诊断结论1、根据以上分析,一炼轧厂吐丝机有以下两方面的故,55,5,、从在线监测系统的时域和频域两方面都能表明吐丝机,II,轴上轴承,损坏的渐变过程。综合此事件所获得的经验:当峭度指标异常升高,,轴的转动频率振幅也有很大的增加,同时出现转动频率的高阶次谐频。这些条件综合起来,就是滚动轴承故障的判定条件。,附图:轴承(型号,10284776,)损坏照片如下:,图735,、轴承内外圈损坏照片,图736,、吐丝机,II,高速轴,5、从在线监测系统的时域和频域两方面都能表明吐丝机II轴上轴,56,第7章,7-1滚动轴承的_通常用来作为诊断的依据。,7-2传感器的安装部位通常在轴承座部位,并按信号传动的方向选择_和_布置。,7-3采用峰值系数法和峭度指标法进行故障诊断,正常时,滚动轴承的峰值系数约为_,峭度值约为_;但是,当峭度值下降时不表明故障恢复,而可能是轴承故障_,剥落斑点_。,7-4滚动轴承常见的失效形式有哪些?分别简要介绍失效原因。,7-5滚动轴承运行时为什么会产生振动?,7-6采用较多的滚动轴承故障信号分析方法有哪几种?,7-7什么叫滚动轴承的共振解调法?,7-8滚动轴承有哪些特征频率?其计算公式分别是什么?,7-9简述共振解调技术的基本原理和作用?,7-10描述一个实例的诊断流程。,第7章,57,1 滚动轴承的失效形式,1,.滚动轴承的磨损失效,磨损是滚动轴承最常见的一种失效形式。,在滚动轴承运转中,滚动体和套圈之间均存在滑动,这些滑动会引起零件接触面的磨损。尤其在轴承中侵入金属粉末、氧化物以及其他硬质颗粒时,则形成严重的磨料磨损,使之更为加剧。,另外,由于振动和磨料的共同作用,对于处在非旋转状态的滚动轴承,会在套圈上形成与钢球节距相同的凹坑,即为,摩擦腐蚀,现象。,如果轴承与座孔或轴颈配合太松,在运行中引起的相对运动,又会造成轴承座孔或轴径的磨损。,当磨损量较大时,轴承便产生游隙噪声,振动增大。,1 滚动轴承的失效形式1.滚动轴承的磨损失效,58,1.,轴承刚度变化引起的振动,当滚动轴承在恒定载荷下运转时,(,如图,7,2),,由于其轴承和结构所决,定,使系统内的载荷分布状况呈现周,期性变化。如滚动体与外圈的接触点,的变化,使系统的刚度参数形成周期,的变化,而且是一种对称周期变化,,从而使其恢复力呈现非线性的特征。,由此便产生了,分数谐波振动,。,此外,当滚动体处于载荷下非对,称位置时,转轴的中心不仅有垂直方向的,而且还有水平方向的移动。这,类参数的变化与运动都将引起轴承的振动,也就是随着轴的转动,滚动体,通过径向载荷处即产生,激振力,。,这样在滚动轴承运转时,由于刚度参数形成的周期变化和滚动体产生,的激振力及系统存在非线性,便产生多次谐波振动并含有分谐波成分,不,管滚动轴承正常与否,这种振动,都要发生,。,图,7,2,滚动轴承刚度的变化,1. 轴承刚度变化引起的振动 图72滚动轴承刚度的变化,59,微振腐蚀,为轴承套圈在机座座孔中或轴颈上的微小相对运动所至。,根据滚动轴承的运动关系式计算得到各项特征频率,在频谱图中找出、观察其变化,从而判别故障的存在与部位。,ISO10816-3标准简介,轴承刚度变化引起的振动,需要指出的是,图78是一个在实验室作出的图形。,5钢时转速:1071r/min) 吐丝机 a35测点谱图数据),4m/s2,到5月6日达到9.,轴承的腐蚀斑则是以后损坏的起点。,计算的特征频率值往往十分接近测量数值,所以在诊断前总是先算出这些值,作为诊断的依据。,ISO10816-3标准简介,因为滚动轴承在机器设备中的作用是支撑传动轴的旋转,所以滚动轴承故障所激发的振动必然对轴及轴上的机械零件产生影响。,图74 滚动轴承内缺陷所激发的振动波形,有与部件有关的振动,也有与制造质量有关的振动,还有与轴承装配以及工作状态有关的振动。,7-2传感器的安装部位通常在轴承座部位,并按信号传动的方向选择_和_布置。,磨损是滚动轴承最常见的一种失效形式。,图,7,4,滚动轴承内缺陷所激发的振动波形,3.,滚动轴承的早期缺陷所激发的振动特征,滚动轴承内出现剥落等缺陷,滚动,体以较高的速度从缺陷上通过时,必然,激发两种性质的振动。见图,7,4,,,第一类,振动是上节所讲的以结构和运动关,系为特征的振动,表现为冲击振动的周,期性;,第二类,振动是,被激发的以轴承元件固有频,率的衰减振荡,表现为每一个脉冲的衰,减振荡波。,轴承元件的固有频率取决于本身的,材料、结构形式和质量,根据某些资料,介绍,轴承元件的固有频率在,20K,60K,Hz,的频率段。因此,有些轴承诊断仪,就,针对这一特点进行信号分析处理,在这一频段内工作的仪表。,微振腐蚀,为轴承套圈在机座座孔中或轴颈上的微小相对运动所至。,60,4,冲击脉冲法(,SPM,),冲击脉冲法,是利用轴承故障所激发的轴承元件固有频率的振动信号,经加速度传感器的共振放大、带通滤波及包络检波等信号处理,所获得的信号振幅正比于冲击力的大小。,在冲击脉冲技术中,所测信号振幅的计量单位是,dB,。测到的轴承冲击,dB,i,值与轴承基准值,dB,0,相减(,dB,0,是良好轴承的测定值)。,dB,N,= dB,i,dB,0,冲击脉冲计的刻度就是用,dB,N,值表示的。轴承的状况分为三个区:,(,0,20,),dB,N,表示轴承状况良好,(,20,35,),dB,N,表示轴承状况已经劣化,属发展中的损伤期,(,35,60,),dB,N,表示轴承已经存在明显的损伤。,4冲击脉冲法(SPM),61,例:,图,79a,,是内圈轨道上有疲劳损伤和滚子有凹坑缺陷轴承的振动时间历程。,图,79b,则是其频谱图,该图不便识别。,图,79c,是其倒频谱,明显看出有,106Hz,及,26.39Hz,成分,理论计算上滚子故障频率为,106.35Hz,及内圈故障频率为,26.35Hz,,在此看出,倒频谱反映出的故障频率与理论几乎完全一致。,在滚动轴承故障信号分析中,由于存在着明显的调制现象,并在频谱图中形成不同族的,调制边带,。,*当内圈有故障时是则内圈故障频率构成调制边带;,*当滚子有故障时,则又以滚子故障频率构成另一族调制边带。,因此轴承故障的倒频谱诊断方法可以提供有效的预报信息。,例:,62,(2),轧,6.5,钢吐丝机,a35,水平测点峰值系数趋势图,由图,7,28,可见,在,2,6,月份轧,6.5,钢时,吐丝机,a35,水平测点峰值系数在,4,月,13,日之前维持在,5,以下,到,4,月,16,日达到,10,,此后到,5,月,25,日之间一直维持在,6.5,以上,轴承在正常状态下的峰值系数为,5,左右,说明吐丝机在,4,月,13,日时已有故障隐患了,到,5,月,25,日后吐丝机,a35,测点峰值系数又降到,5,以下,说明此时轴承到已经损坏了。,图728 峰,值,系数趋势图,(2) 轧6.5钢吐丝机a35水平测点峰值系数趋势图图7,63,(2),a35,测点峰值明显上升时的时域波形及频谱图,(,轧,6.5,钢,),图732,(a),吐丝机,06,年,4,月,25,日,4,:,00,时域波形图,(2)a35测点峰值明显上升时的时域波形及频谱图(轧6.,64,(4),吐丝机轴承碎裂当天的时域波形及频谱图,(,轧,6.5,钢,),图734,吐丝机,06,年,6,月,27,日,06,:,51,时域和频域波形图,(4)吐丝机轴承碎裂当天的时域波形及频谱图(轧6.5钢),65,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!