香山科学会议第2次学术讨论会简介ppt课件.ppt

上传人:钟*** 文档编号:17692346 上传时间:2020-11-30 格式:PPT 页数:65 大小:2.10MB
返回 下载 相关 举报
香山科学会议第2次学术讨论会简介ppt课件.ppt_第1页
第1页 / 共65页
香山科学会议第2次学术讨论会简介ppt课件.ppt_第2页
第2页 / 共65页
香山科学会议第2次学术讨论会简介ppt课件.ppt_第3页
第3页 / 共65页
点击查看更多>>
资源描述
香山科学会议 第 322次学术讨论会 简介 会议主题 :合成生物学 魏江春 2008年 06月 16日 1 背景 香山科学会议是由科技部(原国家科 委)发起,在科技部和中国科学院的 共同支持下于 1993年正式创办,相继 得到国家自然科学基金委员会、中国 科学院学部、中国工程院、教育部、 解放军总装备部和国防科工委等部门 的资助与支持。上述各单位均为香山 科学会议的理事会成员单位。 2 背景 香山科学会议的宗旨是:创造 宽松学术交流环境,弘扬学术 民主风气,面向科学前沿,面 向未来,促进学科交叉与融合, 推进整体综合性研究,启迪创 新思维,促进知识创新。 3 背景 新的学术思想和新方法、分析新 学科的生长点以及交叉学科的新问 题基础研究的科学前沿问题与我国 重大工程技术领域中的科学问题均 可作为会议主题。会议侧重于:探 讨科学前沿、展望未来发展趋势、 讨论最新突破性进展、交流。 4 背景 香山科学会议实行执行主席负责制, 以评述报告、专题发言和深入的自 由讨论为基本方式,报告时间与讨 论时间的比例大体为 1: 1至 1: 2。 要求报告人以过去的研究积累为基 础,涵盖最新,信息把握最新动向, 发表新的见解。同时,鼓励对原有 理论提出质疑,提倡发表不同意见, 并提出有独创性的思考与见解。 5 背景 香山科学会议每年分两次公布全年的会议 安排,每年 1月 1日发布上半年的会议安排 计划, 7月 1日发布下半年会议安排计划。 申请者可以集体或个人的名义自由申请召 开香山科学会议。申请的会议主题经过同 行专家评议后,由理事会最后审定。会议 主题确立后,该主题的申请人、执行主席 与香山科学会议的学术秘书共同磋商,确 定会议召开的日期、中心议题、评述报告、 专题发言与人员安排。对所有的申请,我 们都会在很短的时间内以书面的形式给予 答复。 6 背景 会议宗旨 组织机构(理事会、 组织委员会) 会议主题 遵循的 原则 多样化学术活动 学术讨论 会 会议执行主席 与会人员 会议 申请 会议经费 7 香山科学会议 2008年上半年会议计划表 会次 会议主题 执行主席 会议日期 318 中医药发展思路与继承创新思维和方法 陈 竺 王永炎 颜德馨 陈可冀 刘德培 02.23 24 319 中国全民健康保障问题与对策 刘德培 孙九林 俞梦孙 尹 岭 02.26 28 320 2007/2008国际极地年及未来极地研究 的科学前沿 孙 枢 秦大河 汪品先 严 俊 杨惠根 04.02 04 321 经济计算与政策模拟 林 群 李善同 王 铮 05.06 08 322 合成生物学研讨 魏江春 张春霆 Terry Hwa 汤雷翰 孙之荣 05.12 13 323 本草物质组 梁鑫淼 惠永正 蒋华良 杨胜利 05.20 22 324 现代科学技术体系总体框架的探索 朱照宣 戴汝为 于景元 王众托 马蔼乃 05.27 29 325 新一代非易失性的电阻型存储器 07.08 09 326 精密测量物理和方法 叶朝辉 李家明 罗 俊 07.13 15 327 肿瘤纳米技术与纳米药物 10.21 23 8 生命 1.0版本 36亿年前,一个微小的生命细胞在地 球的荒野中诞生,它自我复制,它的 后代们继续复制自我,就这样,随着 遗传基因一代代变异,延续数十亿代。 今天,每个生物体 每个人、植物、 动物和微生物 都能从第一个细胞 找到自己的起源。迄今为止,地球的 生物大家族是我们在宇宙发现的唯一 存在的一种生命。 9 生物大家族中的新成员 不过现在,将会有一些新成员加入到这个 生物大家族。在过去这些年里,科学家一 直在尝试从零开始制造全新的生命形式 用化学物质造出合成(脱氧核糖 核酸),由合成基因,再由基因形 成 基因组 ,最终在实验室造出全新生物体 的分子系统,而这种生物体在自然界从未 出现过。 10 这些向“造物主”的垄断地位发起挑 战的人包括 工程师、计算机学家、物 理学家和化学家 。他们以有别于传统 生物学家的视角看待生命,并在 2003 年开创了一个全新的研究领域 合 成生物学 。 11 由 DNA重组技术到合成生物学 理念:为细胞编写“基因 软件 ” 自然演化的有机体(即生物学家所谓的“生命 1 0版本”)的 基因组 图谱正在以前所未有的速 度被绘制完成,而其中的遗传密码也将被逐渐解 开。合成生物学家认为,他们可以利用这些已知 信息来设计、打造新生命形式。 在过去,遗传工程一直拘囿于对已有的遗传密 码进行简单修补改造,比如从一种细菌中提取一 个基因,然后植入玉米或猪的染色体。 而合成生 物学所要打造的生命种类是全新的 它不是任 何一个原始母细胞的后裔,也没有哪个物种是它 的祖先。其实在本质上,这是一个逆自然的过程。 12 合成生物学 如果说 1953年双螺旋分子结构的发 现让分子生物学家意识到,基因与细胞的 关系就像计算机的软件和硬件,那么合成 生物学正在做的就是 设计新“ 软件 ”、开 发新“硬件”。 13 生物资源研究的 三个层次 物种资源 基因资源 1828年,德国化学家 Wohler人工合成了存在于生 物体内的一种有机物质 -尿 素,从而打破了“生命”与 “非生命”之间的 物质壁垒 。 1960,我国科学家首次合成 了具有生物活性的蛋白质 -胰岛 素 。 当人类进入基因组和后基因 组的二十一世纪的今天,科学 家正在为人工合成生命而努力。 有活性的 X174噬菌体 (5386个 bp)和 脊髓灰质炎 (7500个 bp)已 被科学家先后合成。 Mycoplasma laboratorium 人工生命 (以人工设计为主导 ) 合成生物学 DNA重组技术 物种生物学 转基因生物 一亿种 :140万种 (占 1.4% ) 14 全 球 九 大 新 兴 科 技 展 望 合成生物学 通用翻译 纳米导线 拜埃斯氏技术 T 射线 核糖核酸干扰分子疗法 大电网的控制 微射流光纤 个人基因组学 15 synthetic biology 合成生物学 (synthetic biology)一词最早出现于 1911 年 7 月 8 日著名医学刊物 柳叶刀 The Lancet. Reviews and Notices of Books. The Lancet, 1911. 178 (4584):97-99. 1发表的一篇书评中。 后来虽然断断续续出现过多次 , 但在 1980 年第一次以 “基因外科术 : 合成生物学的开始”为题出现在德文刊物 2的一篇长篇论 文。 Hobom,B.Gene surgery:on the threshold of synthetic biology,Medizinische Klinik, 1980,75(24):834- 841. 随着人类基因组计划的完成 , 2000年以后 , 合成生物学一 词在学术刊物及互联网上逐渐大量出现。 16 合成生物学论文增长情况 17 合成生物学的定义 加州大学伯克利分校 ( UCB) 的化学工程教 授 Keasling 说 : 合成生物学正在用“生物学” 进行工程化 , 就像用“物理学”进行“电子 工程” , 用“化学”进行“化学工程”一样。 哥伦比亚癌症研究中心、测序及基因组科 学中心主任 Holt 说 , 合成生物学与传统的重 组 DNA 技术之间的界限仍然是模糊的。从 根本上说 , 合成生物学正在利用获得的“元 件”进行下一层次的工作 对细胞进 行实际的工程化。 18 合成生物学的定义 哈佛大学医学院遗传学教授、计算遗传 学中心主任 Church 说 , 主要的出发点是 在把合成生物学与现有的领域 ( 例如基因 工程或细胞工程 )分离开来。我们已经在 一次涉及一个“零件”或少量“零件”。 合成生物学是利用我们所确信的一些 “零件”进行新生物系统的工程。它在 利用从系统生物学 (systems biology)得 出的最好分析去加工制作及检验复杂的 生物机器 . 19 合成生物学的定义 明尼苏达大学物理系教授 Noireaux 说 , 合成生物学的定义是令人困惑的 ,在很 多方面就像生命的定义一样困惑。 作 为一个物理学家 , 会喜欢建造机器、机 器人。这正是我们试图利用生物分子 要做的事情。这看起来像工程 , 但也面 临许多基础问题。 20 合成生物学的定义 根据上述情况 , 我们推荐“合成生物学组织” 网站 4上公布的合成生物学的定义 , 合成生 物学包括两条路线 : ( 1)新的生物零件、组件和系统的设计与建 造 ; ( 2)对现有的、天然的生物系统的重新设计。 这两条路线的目的都是为了造福人类社会。 21 合成生物学发展的技术基础 随着人类基因组计划的胜利完成 , 一些 基本技术 , 例如 基因组测序和 DNA 从 头合成速率 ,已取得里程碑性的突破 。 如图 2 所示 , 基因组测序速率过去 10 年 增加了 500 倍以上 , 而测序成本下降了 3 个数量级以上。 据预测 , 新的测序技 术将使人的基因组测序成本降低到 1000 美元 5。 22 合成生物学发展的技术基础 DNA 合成速率过去 10 年增加了 700 倍以上 , 每年都在翻番。更为 重要的是利用可编程的 DNA微芯片 , 实现了精确的多通道基因合成 6, 从而可在短时间合成大的 DNA 片 段 , 而且错误率很低 , 组装一个 14.6kb 的 DNA 只有两个错误 , 这 就导致 DNA 的合成成本大大降低。 23 合成生物学的研究方法 合成生物学的工程本质 合成生物学新学科综合应用包括 分子生物学 、 工 程学 、 化学 、 数学 、 物理学 、 信息学 等不同学科 的知识 , 进行 设计及实现新的细胞行为 ,这是通过 包括新的 蛋白质 、 基因线路 、 信号级联 及 代谢网 络 的构建等种种生物工程努力来达到的。 通过元 件及基因线路的从头构建 , 合成生物学的目标是既 要改进我们对自然现象的定量理解 , 又要促进培育 一个工程学科以可预测的及可靠的方式得到新的 复杂的细胞行为。 24 合成生物学的研究方法 将合成生物学涉及的生物系统分成 DNA、零件、 装置、系统 这样 4 个层次。 美国普林斯顿大学电子工程系与分子生物学系的 Weis s等 10发表了题为“合成生物学 : 对于一个 刚出现学科的新的工程作用”的综述。他们概括 了合成生物学新学科的基本性能以及与其它工程 学科相比的独特性 ; 讨论了从生物装置、模块、细 胞到 多细胞系统各个层次进行设计和建造工程细胞的 方法 . 25 借鉴化学工程及电子工程的思路 进行合成生物学研究 合成生物学的核心观念认为 生命的所 有零件都能由合成 ( 即化学法 ) 而制造 , 进而通过工程化并组装成实用的生物 组织 。 2000 年 , 斯坦福大学的化学教 授 Kool 等人在美国化学会年会上提出 用有机化学及生物化学的合成能力去 设计非天然的、合成的分子 , 进而使这 些分子在生命系统中有活性功能 。 26 大规模集成电路技术 通常人们认为 DNA 遗传密码 是指挥控制生命的 软 件 ( software) , 而 细胞膜及细胞内所有的生物机器 被认为是生命的 硬件 ( hardware, 在合成生物学中 也常称为 wetware) 。这种对生命系统软件与硬件 的认识可以借助于 电子工程 ( 大规模集成电路技术、 电子计算机硬件与软件技术等 ) 的研究方法、基本 技术与工具。就像技术人员现在用标准化的、现 成的电子元件组装成计算机一样 , 合成生物学工作 者预计有一天 , 工程师可以将充分表征的生物原件 组装成健壮的宿主生物体 , 其具有特定的生物功能。 例如 : 可将生物质转化为生物燃料 , 或低成本地生 产高效药物 ,或可以检测及去除污染物 . 27 细胞底盘机架 对于合成生物学来说 , 创建一个细胞底盘机 架 ( cellular chassis) 用来安装我们设计的 生物零部件是非常重要的。在细胞底盘机 架中可以集成来自各个子系统的信号以使 其有复杂的细胞功能。细胞底盘机架必须 为细胞生长及组件工作提供各种组分 , 应该 有各种标准的连接 , 而且足够稳定以便能在 工业上应用。 大肠杆菌可以认为是一个性 能优良的微生物 , 可用作一个细胞底盘机架 。 28 研究框架的三个层次 知识层次 主要包括 : 设计 (design)、组合 (composability)、 表征 (characterization)、标准化 (standardization)、 抽象 (abstraction)。 技术层次 主要包括 : 零件 ( parts) 、装置 (devices)、 底盘机架 (chassis)。 技术集成层次 :必须依靠知识层次的基础知识来构 建技术层次的零件、装置和底盘机架 , 而技术层次 的发展又会促进知识层次的积累。通过技术层次的 积累可以逐渐集成为全功能系统 , 即包含寻找肿瘤 细胞的微生物、制药微生物等系统的第三个层次。 29 SynBERC 研究框架包括三个层次 知识层次 技术层次 技术集成层次 设计 组合 表征 标准化 抽象 零件 装置 底盘机架 30 国外合成生物学的发展规划 人类基因组测序项目完成后 , 美国能源 部启动的 GTL(Genome To Life)计划就涉及“合 成基因组研究项目” , 包括 : “从可编程的 DNA 微芯片进行精确的、低成本的基因合成”、“构 建一个合成的基因组” 等。美国国家自然科学基 金 2006 年投入 2000 万美元资助建立“合成生物学 工程研究中心” ( Synthetic Biology Engineering Research Center- SynBERC), 由 UCB、哈佛大 学、 MIT、加州大学旧金山分校等共同组建。 31 2005 年欧盟发表了 “合成生物学 - 将工程应用于生物学” 19 的项目报告 该报告给出了合成生物学清楚的定义及范围 ; 展望了合成 生物学未来 10 15 年在 生物医药、 小分子药物的体内合成、 生命化学的 拓展、 可持续的化学工业、 环境与能源、 智能材 料及生物材料等方面的前景 ; 分析了合成生物学 的回报及存在的风险 ; 提出了欧盟应该在研究、 支撑基础和教育等方面应该采取的行动。 2007年欧盟启动了“合成生物学”涉及上述报告中各 方面的 18 个项目 20。 32 合成生物学国际会议 合成生物学国际会议至今已经召开了 3次 : 2004 年在美国 MIT召开 ; 2006 年在美国 UCB召开 ; 2007 年在瑞士苏黎世联邦理工学院 (ETH) 召开。 33 国际基因工程机器大赛 (internationalGeneticallyEngineeredMachinecompetition) 国际基因工程机器大赛 21 ( iGEM) 从 2004 年开始已经举行了 4次 : 2004 年有 5 个队参赛 , 2005 年有 13 个队参赛 , 2006 年有 37 个队参赛 , 2007 年在中国天津大学召开。 34 国际基因工程机器大赛 的 iGEM, 包括天 津大学、北京大学、清华大学、中国科技大学及 香港与台湾地区一些大学的代表队。 iGEM 的竞 赛方式激励性很强 , 有利于亲身实践及多学科教 育。生物学专业学生学会了用工程方法去组织、 模拟及组装复杂系统 , 而学工科的学生则能使自 己在应用分子生物学方面得到很好训练。 iGEM 竞赛的核心是关于标准生物零件的观念 : 生物零 件是详细明确指定的 , 而且在其它子系统及整个 系统中工作得非常好。一旦这些零件的参数被确 定及标准化 , 则生物系统的模拟、设计就会变得 更容易、更可靠。 35 学术刊物的创刊 2007 年国际上创办了两个新刊物 : 一个 是 Sys tems and Synthetic Biology; 另一个 IET Synthetic Biology。 36 国外合成生物学研究进展 青蒿素 美国 UCB 化学工程系教授、劳伦斯国 家实验室合成生物学中心主任 Keasling 在从事 抗疟疾药的生物合成研究中 , 始终把细胞当作微 生物制药工厂进行设计、加工、集成、组装、控 制。体现在合成生物学技术上包括 DNA 的合成、 来自细菌、酵母及植物 ( 青蒿 Artemis ia annua) 等多种基因及代谢途径的组装、多基因的精密调 控等。其研究成果先后发表于 2003 年 34 和 2006 年 35。 2003 年的工作生产菌为大肠杆菌 , 通过植物青蒿的 amorphadiene 合成酶 ( ADS) 密码子优化、共表达 SOE4 操纵子 ( 编码 DXS、 IPPHp 、 IspA) 以及引入异源的酵母菌甲羟戊 酸途径等途径 , 提高了 amorphadiene 的产量。 对于酵母菌 , 主要工作包括改造 FPP 合成途径 , 引入植物青蒿的 amorphadiene 合成酶 ( ADS) 基因 , 克隆青蒿类植物转化 amorphadiene 为青 蒿酸的细胞色素 P450 氧化还原酶等。 37 改造后的 菌株使青蒿酸的合成能力大大提高。上述结果可 望以低成本生产抗疟疾药物 , 用于第三世界地区 的疾病治疗。为了尽快使研究成果产业化 , Keas ling 等人专门建立了新的公司 Amyris Biotechnologies , 用合成生物学技术进行抗疟疾 药及生物能源的生产。 38 2005 年 MIT“技术评论” 将“ 细菌工厂” ( Bacterial Factories) 作为将 影响世界的新出现的 10 大技术之一 36。由于在 生物合成抗疟疾药物的突出成就 , Keas ling 被美 国“发现”杂志评选为 2006 年度最有影响的科 学家 37。该项目已经获得比尔 - 梅林达盖茨基金 会 4300 万美元的资助 , 进行进一步的实验室研 究、中试、临床实验等后续工作。 39 2005 年 11 月 24 日出版的 Nature 杂 志 , 为了庆祝成长很快的合成生物学新领域 38, 在同一期中刊登了多篇合成生物学的文章 ( 包括 两篇编辑的概述以及以“合成生物学”为题所作 的封面专栏结构介绍 ) 。 Voigt 等 39设计了一个 细菌系统 , 可以由红光触发该系统在不同状态之间 开关。该系统由一种合成的传感激酶组成 , 使得 细菌的菌苔能像生物胶片一样起作用 , 当接受一 类光投射到菌体后 , 可产生高清晰度的二维化学图 像。 40 这种具有图像处理功能的新型基因线路的 创造 , 证明了在新生的合成生物学中 , 可以利用 的工具及方法的巨大能力及可用性。经编程的光 调控原理将能使单个细胞或群体细胞的基因表达 可在时间上和空间上进行控制 , 这在细菌微晶成 像、生物复合材料生产及多细胞信号网络的研究 中有潜在的应用。由于这项技术的广泛影响 , 年 仅 30 岁的 Voigt 被 MIT 的“ 技术评论” 评为 2006 年 35 岁以下 35 名 ( TR35) 重大技术创新 奖 40。 Sprinzal 和 Elowitz 发表了“ 基因线路重 建”的述评 41, 主要包括自然的与合成的基因线 路图范例、合成基因线路中的模块化组分、 41 从合成基因线路中学到的启示、合成基因线路面临的 挑战及未来的方向。 Endy8以“工程生物学的基 础”为题发表的综述 , 用工程师的方法将合成生物 学看作技术 ( 例如基因工程技术、生物技术 ) 的延 伸 , 包括对生物学进行工程化的基础、标准化、解 耦、观念抽象化、生殖生物机器的进化或设计等。 一篇关于合成生物学生物安全的评论 42, 强调了 安全第一 , 睁大警戒的眼睛 , 并从基因治疗接受教 训。该期还以“设计生命”为题用两页的篇幅对刚 刚结束的 iGEM 进行了详细报道与评述 43。 42 重新设计并构建新的生物体 T7 Endy 研究组 44为了更容易理解及操作 生物系统 , 他们在假定生物体中有许多重叠的对 生物来说不是必须的遗传元件的基础上 , 对噬菌 体 T7 进行了重新设计及操作 : 用工程化的 DNA (12179 bp)取代野生噬菌体 T7 基因组 ( 39937 bp) 中的一些非必需遗传元件 ( 11515 bp) , 产 生了一个与预想一致的 新的生物体 , 它的 基因组 编码了一个 活的噬菌体 , 其 保留了 原野生噬菌体 T7 的 关键性能 。结果表明 , 编码自然生物系统 的基因组可以进行系统的重新设计 , 并构建新的 生物体 , 以用于对生物系统的科学理解或用于为 人类服务的目的。 43 设计构建简单高效大肠杆菌基因组 2006 年 SCIENCE 发表了 Blattnerj 研究 组 45的论文 : “减少了大肠杆菌基因组所出现的 性质。”该研究用合成生物学方法 , 通过 有计划 地精确地删除 , 使所设计的菌种基因组减少高达 15% , 但却保留了好的生长状态和蛋白质生产。 基因组减少还导致了没有料想到的有益性质 : 高 的电穿孔效率、重组基因和质粒的精确繁殖 , 而 这些质粒在其它菌种中是不稳定的。该研究为设 计构建简单高效菌株奠定了很好的基础。 44 细菌可以感觉其环境、在细胞类型之间 做出区分、并将蛋白释放到真核细胞。 Anderson 等人 46用工程化的方法对细菌与癌细胞之间的相 互作用进行了研究。他们表征了取自假结核耶尔 森氏菌的侵袭素作为一个输出模块 , 这使得大肠 杆菌能侵入诱导癌的细胞株。为了能从环境上约 束这种侵入 , 他们将这种模块置入异源合成传感 器的控制中。用特定数目的费氏弧菌 lux 基因传 感线路、响应于低氧的 fdh 启动子或可诱导阿拉 伯糖的 araBAD 启动子 , 则细菌可以在一定的条 件下侵入并通过合成的侵袭素杀死癌细胞。 45 结果表明 , 编码传感、线路和执行机构的遗传模块 的组合提供的一个总体平台 , 其治疗作用可以编程 到细菌中。由于该技术是通过合成生物学的“模 块” 技术来实现的 , 所以这些合成“ 零件” 或 “模块”具有很好的通用性。该技术受到学术界 及产业界的高度评价 , 今年 31 岁的 Anderson 被 MIT 的“技术评论”评为 2007 年 TR35 重大 技术创新奖获得者 47。 46 基因组的种间取代 SCIENCE 最近发表了人类基因组测序 创始人之一 Venter 研究组的论文 48, “在细菌中 的基因组移植 : 将一种物种变为另一种物种”。 作为走向合成基因组的一个步骤 , 通过转移一个 整个的基因组 ( 作为裸 DNA) , 他们用另一个物 种的基因组完全取代了一个细菌细胞的基因组。 该文发表以后 , 在学术界及社会上引起巨大反 响。 NATURE49为此在“ NEWS 而发酵罐下层主要是营养混合物水溶液 , 因而不需 要复杂的培养技术。 52 与目前的燃料乙醇生产技术相比 , 由于不需 要能耗非常高的乙醇精馏技术 , 从而可使能 耗降低 65% 。由于采用了合成生物学与系 统生物学创造微生物这种尖端技术 , 而且这 种石油烃是可再生的、清洁的、国内可生 产的、成本可竞争的、与现有的汽车发动 机及汽油供应系统是可兼容的 , 所以 29 岁的 Berry 获得了 MIT“技术评论” 2007 年 TR35 的最高奖 ( 2007 Innovator of the Year) 57。 53 54 人们对酶催化理解的最好的检验是从 头设计一个酶。 Kuhlman 等 58用从头设计法设 计了一个具有新的折叠结构的小蛋白 , 并用 X- 射 线结晶学方法证实了其晶体结构。 Dwyer 等 59 通过实验证实了对已知结构的蛋白质酶活的计算 机设计。他们预测了一些突变 : 将磷酸丙糖异构酶 插入核糖结合蛋白 ( 其通常是缺少酶活的受体 ) , 55 结果导致该设计含有 18- 22 个突变 , 比未催化 的反应有 105 106 倍的速率增强 , 并且具有生物 活性及极好的动力学性质。有这些研究为基础 , 关于人工蛋白的特定催化活性的设计似乎是可以 办到的。该成就是通往合成生物学的一个里程 碑 , 在医学和生物技术等应用领域会有巨大的潜 力 60。 56 Arnold 研究组 61借助于计算机结构模 拟与设计 , 创造了包含约 3000 个 P450 血红素 蛋白的家族 , 这些蛋白能够正确折叠 , 并可在 所选的 7 个位置通过重组 3 个天然的细胞色素 P450 而结合 1 个血红素辅因子 , 从而使结构破 坏最小。这种可创造几千个人工蛋白质组成的家 族而不受自然选择种种限制的技术平台 , 为探索 蛋白质结构与功能的决定因素提供了新的巨大的 机会。 57 天然的及工程化的 RNA 零件可以执行 多种功能 , 包括杂交成靶标、结合配体、经历程 序化的构型变化及催化反应。这些 RNA 零件可 进一步组装成合成的基因线路以调控基因表达。 Davidson 和 Ellington62从零件及线路两方面对 合成 RNA 线路进行了综述及展望。 Win 和 Smolke 63最近发表了“ 一个模块的及可扩展的 基于 RNA 的基因调控平台”的研究论文 , 该平 台可用来工程化细胞的功能。他们在工作中执 行并验证了该技术平台的 5 个工程设计原理 : 规 模可改变的能力 ( scalability) 、轻便性 ( portability) 、实用性 ( utility) 、组合能力 ( compos - ability) 、可靠性 ( reliability) 。这些在合成生物 学、生物技术、卫生健康及医药领域的应用具有 很大的潜力。 58 国内合成生物学的研究发展 目前从国内中文期刊数据库以“ 合成生物 学”为关键词还没有检索到有关研究论文 , 只有 两篇综述短文 64,65。与合成生物学密切相关的 研 究 ( 如基因工程、代谢工程、生物信息学、系统 生物学及各种组学研究 ) 已经有很好研究基础并 正在迅速发展。 59 合成生物学发展前景展望 近几年来 , 作为合成生物学技术基础的基因组测序技术及 DNA 合成技术正以指数增长速率发展 , 这正如大规模集成 电路与计算机技术的发展一样 , 于是人们认为合成生物学 将会像信息技术一样得到迅速发展 , 并将在能源、化学品、 材料、疫苗等医药领域得到广泛应用 , 具有巨大的社会效 益及经济效益。同时 , 在对人类认识生命、揭示生命的奥 秘、重新设计及改造生命等方面具有重大的科学 意义。 2006 年 Fu 66 及 Pleis s 67 分别发表了综述文章 , 展望了合成生物学的远景。 Henkel等 68结合 Amyris 生物 合成公司迅速发展的情况对合成生物学的经济学进行了分 析。 60 合成生物学发展前景展望 在美国能源部资助下 , 美国生物经济研究协会 69 2007 年发表了“ 基因组合成和设计未来 : 对美国经济的 影响” 的研究报告。报告分析了合成生物学及基因组工 程支撑技术的迅速发展 ; 从技术的发明、创造、结合、重 组、传播、推广的角度 , 分析了生物工程革命的经济影响 范围及大小 ; 展望了合成生物学与基因组工程的应用前景。 图 5 是重组 DNA 技术发展速率与预期的合成生物学技术发 展速率的比较 , 从图中可以看出 , 在未来几年 , 合成生物学 技术将会比重组 DNA 技术发展更快。报告预计合成生物 学将在生产化学品、能源、疫苗及医药等方面有极为重要 的应用前景 , 具有重大的经济意义及社会意义。 61 62 合成生物学与生物安全、伦理道德及知识产权 合成生物学的发展引起了合成生物学研究者及社 会各界的广泛关注 , 在各种科学刊物及学术会议上 有关合成生物学与生物安全、伦理道德及知识产 权也是经常讨论的重要议题。上述生物经济研究 报告均涉及这些问题。最近 , MIT 的 Endy 与合成 生物学界的著名学者、企业执行官、安全专家等 十几人发表了题为“ DNA 合成与生物安全” 的 文章 70 , 提出了由合成公司、研究机构及政府管 理机构相互配合共同遵守的框架。 63 合成生物学与生物安全、伦理道德及知识产权 关于合成生物学与知识产权的多篇文章也已经在 科学刊物及法律刊物上发表 71- 73。总之 , 合成 生物学的研究比当前的转基因技术、基因工程等 更为前卫 , 产生的社会效益与风险也是一把双刃剑 , 弄得不好就会产生负面影响。我们必须早做准备 , 在生物安全、伦理、知识产权等方面从一开始就 要 建立必要的法规和制度 , 以保证具有重要科学意 义及应用价值的合成生物学健康快速发展。 64 此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好! 65
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!