2014年7月高二选修2-1《简单的逻辑联结词》.ppt

上传人:xin****828 文档编号:15721420 上传时间:2020-09-01 格式:PPT 页数:41 大小:1.56MB
返回 下载 相关 举报
2014年7月高二选修2-1《简单的逻辑联结词》.ppt_第1页
第1页 / 共41页
2014年7月高二选修2-1《简单的逻辑联结词》.ppt_第2页
第2页 / 共41页
2014年7月高二选修2-1《简单的逻辑联结词》.ppt_第3页
第3页 / 共41页
点击查看更多>>
资源描述
第一章 常用逻辑用语,简单的逻辑联结词,创设情景,引入新课,且:就是两者都要、都有的意思.,或:就是两者至少有一个的意思(可兼有),非:就是否定的意思,今后常用小写字母p,q,r,s,表示命题。,探究新知,巩固练习, 1.3.1 且 (and),下列命题中,命题间有什么关系?,(1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;,1.问题1:,命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.,一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作pq,读作“p且q”,一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,,归纳新知,p,q,pq,记作:pq读作p且q,pq=x|xp且x q,2.问题2 思考:命题 pq的真假如何确定? 观察下列各组命题,命题pq的真假与p、q的真假有什么联系?,P:12能被3整除; q:12能被4整除; pq:12能被3整除且能被4整除;,P:等腰三角形两腰相等; q:等腰三角形三条中线相等; pq:等腰三角形两边相等且三条中线相等.,P:6是奇数; q:6是素数; pq:6是奇数且是素数.,如何确定命题“p且q”的真假性呢?,规定: 当p,q都是真命题时, “p且q”是真命题; 当p,q两个命题中有一个是假命题时, “ p且q”是假命题,简记为:有假则假,填空:一般地,我们规定:当p,q都是真命题时,pq是 ;当p,q 两个命题中有一个命题是假命题时,pq是 .,一句话概括: 全真为真,有假即假.,真命题,假命题,命题pq的真假判断方法:,假,假,假,真,探究:逻辑联结词“且”的含义与集合中学过的哪个概念的意义相同呢?,对“且”的理解,可联想到集合中“交集”的概念 AB=xxA且xB中的“且”,是指“xA”、“xB”这两个条件都要满足的意思,活动探究,例1:将下列命题用“且”联结成新命题,并判断他们的真假: (1)p:平行四边形的对角线互相平分, q:平行四边形的对角线相等; (2)p:菱形的对角线互相垂直, q:菱形的对角线互相平分; (3)p:35是15的倍数, q:35是7的倍数.,(3) pq : 35是15的倍数且是7的倍数. p是假命题, pq是假命题.,(1)pq:平行四边形的对角线互相平分且相等.q是假命题,pq是假命题.,(2)pq :菱形的对角线互相垂直且平分. p、q都是真命题, pq是真命题.,例题分析,解:,有些命题如含有“和”、 “与”、“既,又.”等词的命题能用“且”改写成“pq”的形式,,例2:用逻辑联结词“且”改写下列命题,并判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.,解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题,1.3.2 或 (or),下列命题中,命题 间有什么关系?,(1)27是7的倍数; (2)27是9的倍数; (3)27是7的倍数或是9的倍数.,1.问题1:,命题(3)是由命题(1)(2)使用联结词“或”联结得到的新命题.,一般地,用联结词“或”把命题p和命题q联结起来, 就得到一个新命题,记作pq,读作“p或q”.,一般地,用联结词“或”把命题p和q联结起来,就得到一个新命题,记作:pq 读作:p或q,归纳新知,p,q,pq,pq=x|xp或x q,注意:“或”在实际生活中是不可兼容的, 而作为逻辑连接词是可兼容的。,思考:命题 pq的真假如何确定? 观察下列三组命题,命题pq的真假与p、q 的真假有什么联系?,P:27是7的倍数; q:27是9的倍数; pq :27是7的倍数或是9的倍数.,P:等腰梯形对角线垂直; q:等腰梯形对角线平分; pq:等腰梯形对角线垂直或平分.,P:三边对应成比例的两个三角形相似; q:三角对应相等的两个三角形相似; pq:三边对应成比例或三角对应相等的两 个三角形相似.,如何确定命题p或q的真假性呢?,规定: 当p,q两个命题中有一个命题是真命题时, p或q是真命题; 当p,q两个命题都是假命题时, p或q是假命题,简记为:有真则真,一般地,我们规定:当p,q两个命题中 有 个命题是真命题时,pq是 命题; 当p,q两个命题都是假命题时,pq 是 命题.,一句话概括: 有真即真, 全假为假.,一,真,假,命题pq的真假判断方法:,假,真,真,真,探究:逻辑联结词“或”的含义与集合中学过的哪个概念的意义相同呢?,对“或”的理解,可联想到集合中“并集”的概念 AB=xxA或xB中的“或”,它是指 “xA”、“xB”中至少一个是成立的, 即xA且x B; 也可以x A且xB; 也可以xA且xB,活动探究,例3:判断下列命题的真假: (1)22; (2)集合A是AB的子集或是AB的子集; (3)周长相等的两个三角形全等或面积相等的两个三角形全等.,解:(1)p:2=2 ;q:22 p是真命题,pq是真命题.,(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等. 命题p、q都是假命题, pq是假命题.,(2)p:集合A是AB的子集;q:集合A是AB的子集 q是真命题, pq是真命题.,例题分析,如果pq为真命题,那么pq一定是真命题吗?反之,如果pq为真命题,那么pq一定是真命题吗?,总结思考,思考:如果p且q为真命题,那么p或q一定为真命题吗?反之,如果p或q为真命题,那么p且q一定是真命题吗?,真,真,真,真,假,假,假,假,下列两组命题间有什么关系? (1)35能被5整除; (2)35不能被5整除. (3)方程 x2+x+1=0有实数根; (4)方程 x2+x+1=0无实数根,1.3.3 非 (not),一般地,对一个命题p全盘否定,就得到一个新命题,记作 p,读作“非p”或“p的否定”.,命题(2)是命题(1)的否定,命题(4)是命题(3)的否定.,1.问题1,一般地,对一个命题p全盘否定, 就得到一个新命题,记作:p 读作“非p”或“p的否定”,归纳新知,CSP,P,思考:p与p的真假关系?,若p是真命题,则p必是假命题; 若p是假命题,则p必是真命题.,简记为:真假相反,填空:当p为真命题时,则p为 ;当p为假命题时,则p为 .,思考:命题P与p的真假关系如何?,一句话概括: 真假相反,p与p真假性相反,真命题,假命题,假,真,对“非”的理解,可联想到集合中的“补集”概念,若命题p对应于集合P,则命题非p就对应着集合P在全集U中的补集CUP,探究1:逻辑联结词“非”的含义与集合中学过的哪个概念的意义相同呢?,活动探究,探究2:命题的否定与否命题是不是同一概念呢?他们具有怎样的区别呢?,命题的否定与否命题是完全不同的概念,(1)原命题“若P则q” 的形式, 它的非命题“若p,则q”; 而它的否命题为 “若p,则q”.,命题的否定与否命题的区别,(2)命题的否定(非)的真假性与原命题相反; 而否命题的真假性与原命题无关.,命题的否定与否命题的区别,例:写出命题p: “正方形的四条边相等”的否定与它的否命题. 命题p: P的否命题:,正方形的四条边不相等.,若一个四边形不是正方形,则它的四条边不相等.,例题应用,写出下列命题的否定,并判断它们的真假: (1) p: y=sinx是周期函数; (2) p: 32; (3) p: 空集是集合A的子集.,解:(1) p : y=sinx不是周期函数 命题p是真命题, p 是假命题 (2) p :32 命题p是假命题, p 是真命题 (3) p :空集不是集合A的子集 命题p是真命题, p 是假命题,练习:,写出下列命题的否定,然后判断它们的真假: (1)225 (2)3是方程x29=0的根; (3)5不是15的约数. 解 (1) p :2+25,其中 p是假命题, p是真命题 (2) p : 3不是方程x29=0的根,其中 p是真命题, p是假命题 (3) p : 5是15的约数,其中 p是假命题, p是真命题,A,D,填写下表 注意“非”对关键词的否定方式,不等于,不大于,不小于,不是,不都是,至少有两个,一个都没有,(1)掌握逻辑联结词“且、或、非”的含义 (2)正确应用逻辑联结词“且、或、非”解决问题 (3)掌握真值表并会应用真值表解决问题,自主总结,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!