人教版四年级数学下册第四单元 单元备课策略集体备课解读稿

上传人:小*** 文档编号:153660423 上传时间:2022-09-19 格式:DOC 页数:19 大小:493.50KB
返回 下载 相关 举报
人教版四年级数学下册第四单元 单元备课策略集体备课解读稿_第1页
第1页 / 共19页
人教版四年级数学下册第四单元 单元备课策略集体备课解读稿_第2页
第2页 / 共19页
人教版四年级数学下册第四单元 单元备课策略集体备课解读稿_第3页
第3页 / 共19页
点击查看更多>>
资源描述
小数的意义和性质单元解读在生活体验中获取数学知识,丰富数学思想是学习数学的有效途径之一。数学课程标准给数学学习划定了新的模式及准则,数学的学习,不再是单纯地传授知识,如何确立学生的数学思想,丰富学生的活动经验,培养学生积极的数学态度才是数学教学最根本的目的。下面结合人教版四年级下册第四单元“小数的意义和性质”进行 教材分析。一、课程定位册别三年级上册三年级下册四年级下册五年级上册单元分数的初步认识小数的初步认识小数的意义和性质小数乘法小数除法主要内容分数初初步认识 简单的分数加减法 一位小数的认识 一位小数加减法小数的意义、性质、变化规律、换算小数乘除法及运算定律从数学知识体系的纵向来看,本单元内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学 习小数的开始。从数学知识体系的横向来看,小数的知识设置在四年级的下学期,学生已经完整地学习了自然数的知识、学习了整数的四则运算,在四年级的“数与代数”内容中处于重要地位。这一单元的知识,又 为今后学习小数四则运算打好基础。二、本单元教学内容小节标题1.小数的意义和读写法例题例 1例 2例 3例 4练习九内容安排小数的意义小数数位顺序表小数的读法小数的写法课时1 课时1 课时1 课时2. 小 数 的 性 例 1 例 小数的性质 质 和 大 小 比 21 课时较例 3例 4例 5练习十小数性质应用化简小数小数性质应用改写小数小数的大小比较 1 课时1 课时3. 小 数 点 移 例 1动 引 起 小 数 例 2变化规律变化规律的应用1 课时大小的变化例 3解决问题1 课时练习十一1 课时4. 小 数 与 单 例 1 位换算例 2低级单位的数改写成高级单 1 课时 位的数高级单位的数改写成低级单 位的数练习十二 1 课时5. 小 数 的 近 例 1 似数例 2例 3用“四舍五入”法求小数的 1 课时 近似数改写成用“万”作单位的数 1 课时改写成用“亿”作单位的数整理和复习练习十三练习十四1 课时1 课时本单元共有 17 个例题,小数的意义是全单元的教学重点。从认识整数到认识小数是认数范围的一次了不起的扩展,不仅增加了数的知识,而且增强了应用数去解决问题的能力。认识小数首先是理解它的意义,只有建立小数的概念,才能陆续掌握小数的其他知识。小数的意义也是教学的一个难点,因为这是抽象的数概念。学生虽然有一些生活中的零散经验和对小数的初步认识,但仍然需要大量感性材料作为支撑,并通过抽象与概括逐渐构建完善的小数概念。还需要在教师的具体指导下进行个性化思考,逐步理解小数的本质属 性。三、单元教学目标1.理解小数的意义,认识小数的计数单位,会读、写小数,会比 较小数的大小。2.掌握小数的性质和小数点位置移动引起小数大小变化的规律。 3.会进行小数和十进复名数的相互改写。4.能够根据要求会用“四舍五入”法保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用“万”或“亿”作单位的小数。5.结合生活情景,感受生活中的数学,学习生活中的数学,解决 生活中的数学问题。四、教材编排特点(一)重视对小数意义的理解因为小数的实质是十进制分数的另一种表示形式,所以对小数意义的理解就要涉及十进制分数。由于学生没有系统学习分数的知识,理解分数的十进制关系有困难,所以教材淡化了十进制分数为什么可以依照整数的写法用小数来表示的道理,着重从“小数是十进制分数的另一种表示形式”来说明小数的意义,使学生明白:分母是 10、100、1000的分数可以用小数表示。”为此,教材除了在正式教学小数的意义时,借助计量单位(如,长度单位)来帮助学生理解外,在练习中还安排了很多根据十进制计量单位理解小数的实际意义的练习。如第 36 页第 3 题“用手势比画下面的长度”,第 37 页第 9 题 “说一说下面小数的含义”等。(二)改进了“小数点移动引起小数大小变化的规律”表述实验教材修订教材这样修改,突出了小数点移动与乘 10、乘 100和除以 10、 除以 100的关系,更利于学生理解、掌握。(三)突出法则、规律等内容的提炼在本单元教学中涉及很多法则、规律等知识内容,如小数的读写方法、小数的性质、小数大小比较的方法、小数点移动引起小数大小的变化规律、小数单位换算、求小数的近似数的方法等。教材在编排时注重引导学生提炼,突出提炼过程和方法的引导。如“小数的近似数”教学,教材采用对话的方式,具体呈现了层次清晰地求小数近似 数方法的探索过程,提高学生概括归纳的意识和能力。(四)加强与生活实际的联系小数在实际生活中的应用非常广泛,为了让学生体会这一点,教材在教学内容的设置上注重联系学生的实际生活,增强学生参与学习活动的积极性。如教材第 32 页的测量活动,第 38 页的商品标签,第40 页的跳远排列名次等内容,并且还在练习十一的 47 页设计了丰富的现实问题。这些内容都与学生的生活有着密切联系,学生有一定的 生活经验,从而有利于促进学生参与到活动之中。五、教学建议(一)小数的意义和读写法从教材内容看,“利用特定单位测量的过程中遇到不能用整数数据表示时就产生了小数”,其实这是将小数的产生历史用最简洁的方 式呈现出来。例 1 以两位小数和三位小数的意义为重点,教学小数的意义。用多种形式表示长度,初步教学百分之几的分数可以写成两位小数,千 分之几的分数可以写成三位小数。例题以长度单位的改写为载体,教学小数的意义,分四段进行。第一段围绕“1 分米等于几分之几米?写成小数是多少米?3 分米呢”这些问题,通过写一写、说一说,回忆已经学过的一位小数的知识。三年级下册教科书里,初步教学了十分之几的分数可以写成一位小数,如 3/10 米还可以写成 0.3 米,1 元 2 角还可以写成 1.2 元,学生初步知道一位小数表示十分之几。所以,教材的这一段,只是提出问题和要求,让学生独立改写。而且要求先写出十分之几的分数,再写成小数,沟通一位小数和十分之几分数的内在联系,突出一位小 数的意义。第二段围绕“1 厘米是几分之几米?4 厘米、8 厘米各是几分之几米”这些问题展开两位小数的教学过程。把1 厘米写成几分之几米,有一些难度,通常先要思考:1 米平均分成 100 份,每份长 1 厘米,1 厘米是 1 米的百分之一,是 1/100 米,写出分母是 100 的分数。再指出 1/100 米写成小数是 0.01 米,0.01 读作零点零一。引出了两位小数,凸显了百分之一可以写成两位小数。在上面的过程中,学生建 构了对 1/100 的认识,接受了 0.01 这个小数。以“1 厘米是 1/100 米,1/100 可以写成 0.01”为基础,接着教学“4 厘米是 4/100 米,4/100 可以写成 0.04”“8 厘米是 8/100 米,8/100 可以写成 0.08”就不难了。这些改写,先把厘米作单位的长度改写成米作单位的分数,再把分母是 100 的分数写成两位小数。学生体会了几厘米是百分之几米,百分之几可以写成零点零几的两位小数,感受了百分之几的分数与两位小数之间的对应联系,初步体验了两位小数的含义。第三段围绕“1 毫米等于几分之几米?6 毫米、13 毫米呢”这些问题,教学三位小数。这一段的教学和第二段十分相似,教学这一段内容,要利用学习两位小数得到的经验,更多地发挥学生学习的主动 性和能动性。第四段概括小数的意义。回顾三年级下册十分之几分数的改写,以及上面百分之几、千分之几分数的改写,先指出“分母是 10、100、1000的分数都可以用小数表示”揭示了这些特殊的十进分数与小数的关系。再反思具体的改写活动,从一位小数是根据十分之几的分数写成的,理解“一位小数表示几个十分之一”;从两位小数是根据百分之几的分数写成的,理解“两位小数表示几个百分之一”;从三位小数是根据千分之几的分数写成的,理解“三位小数表示几个千分之一”逐渐揭示了小数的计数意义。在引导学生学习小数的计数单位和进率时,要充分借助学生已有的十进制分数和分数单位之间的关系,加强不同计数单位间的对比:十分之一里有几个百分之一?那0.1 里有几个 0.01 呢?引导学生理解小数每相邻两个计数单位之间 的进率。在例 2 情境图中给出的两个小数和另外给出的 12.378 里,小数的整数部分不再是 0,结合这三个小数,分析它的整数部分和小数部分,了解小数的组成;理解计数单位,认识数位,建立对应关系;在 学生头脑中建立完整的数位顺序表,这一点是非常重要的。第一学段初步认识小数进行简单计算时,有的老师可能介绍了小数的整数部分和小数部分,学生已经知道小数点左边是小数的整数部分,右边是小数的小数部分。本例题的学习要充分利用三年级已有的数位、计数单位知识。首先从整数部分入手,让学生回忆旧知:5 在个位,它的计数单位是一,表示有 5 个一,整数部分组成学生应该掌握得比较好,不必浪费时间。然后借助三年级的知识学习小数部分的计数单位和数位:12.378 中,3 表示什么?3 表示 3 个十分之一,此时明确小数部分也是有数位的,即不同计数单位,按照一定顺序排列,它们所占位置叫做数位。(这个概念要反复跟学生讲)那么十分之一所占的位置,就称为十分位。以此为契机,认识计数单位百分之一、千分之一、万分之一以及对应的数位,分析例题中不同数字表示的含义。通过充分的练习熟悉小数部分的计数单位及对应的数位。此处教学时要注意区别小数和小数部分两个概念。比如 12.378 称为小数,而 378 称为小数部分。例 3 是在例 2 已经读了几个小数的基础上进行的。学生还没有完全掌握读小数的方法,需要大量的练习,然后归纳读小数的规律与方 法。例 4 是写小数,对学生而言,读写小数的难点在于有“0”的情 况的处理。(二)小数的性质和大小比较在小数的性质的教学中,教材新增了一处情景,这也可以看作是本单元乃至整册教材在编排上的一个主导思想,就是从学生的生活实际切入到数学的学境中,丢掉数学枯燥的外衣,增强数学的实用性和趣味性,更便于学生理解和掌握。在情境图中,中性笔的单价 2.50 元,笔袋的单价 8.00 元,要解决的问题是“这里的 2.50 元和 8.00 元各表示多少钱?”通过学生熟悉的货币和生活经验,使学生体会价格末尾的 0 是表示没有钱。从而比较“2.50 元和 2.5 的关系”,如果联系购物经验,他们都是 2 元 5角。从而接触小数末尾多 0 与少 0 的现象,发现小数的大小没有改变, 为两个例题的探究提供“相等关系”的直观感知。同时也给出了更加明显的学习提示,将 0.1、0.10、0.100 加粗变红的意义在于提示学生三者之间的区别,也就是计数单位上的变 化,应引起师生的注意。就内容来说,小数的性质并不复杂,应用小数性质化简小数也不难。但是,体验小数性质的必然性和合理性,理解小数末尾添上0 或者去掉 0,小数的大小为什么不变,却不是很容易的。所以,教材安排两道例题,帮助学生形成小数的性质,并在理解的基础上应用性质 改写相关小数。例 1 看图比较 0.1 米、0.10 米和 0.100 米的大小。根据小数的意义,0.1 米是 1/10 米,即 1 分米;0.10 米是 10/100 米,即 10 厘米,0.100 米是 100/1000 米,即 100 毫米。由 1 分米10 厘米100毫米,得到 0.1 米0.10 米0.100 米。又一次接触小数末尾添上 0 和去掉 0 的现象,发现小数的大小相等。例 2 则是通过直观图,观察 0.3 和 0.30 的大小其实是一样的。直观图脱离了人民币、长度具体的量,要借助小数的计数单位间的关系进一步理解小数的性质。0.3 是 3 个十分之一;而 0.30 我们可以看成 30 个百分之一,也可以看成是 3 个十分之一。从其表示的含义中可以看出他们的大小是一样的。这样的推理看似简单,其实相当抽象,不如联系具体的数量和表示小数意义的图形那么容易理解。回顾情景图、例 1 和例 2 里的几组等式,由此得出“小数末尾添上 0 或者去掉 0,小数大小不变”的规律,总结出小数的性质。学生习惯于从左往右观察 0.3=0.30 和 0.1=0.10=0.100,容易看到小数末尾添上 0。教学应引导他们继续从右往左观察等式,体会什么是小数末尾去掉 0。这里要注意一点:0.3 和 0.30 虽然在数的大小上是一样的,但在小数的意义上却是不同的:0.3 表示 3 个十分之一,0.30 表示 30 个百分之一。所以教学时在发现相同点之后,还要思考他们的 不同点,这在后面求近似数的时候将涉及到。例 3、例 4 为进一步理解小数性质和初步应用小数性质而编排, 着力对小数“末尾 0”的体验。例 3 的 2 个小数里都有“0”,有些“0”在小数的末尾,有些“0”不在小数的末尾。判断“哪些 0 可以去掉”,有助于准确理解和掌握小数“末尾”的含义。在这道例题中还能体验,去掉小数末尾的“0”,非 0 数字所在的数位不变,因而不改变小数的组成,不改变小数的大小。如果去掉小数中间的“0”,非0 数字所在数位发生变化,这就改 变了小数的组成,小数的大小随着也就变了。化简中“小数末尾”与“小数点后面”要加强区分,学生容易混 淆概念。例 4 与例 3 内容相近,只是一个化简一个改写小数。都是依据小 数的性质进行的。小精灵提出探究问题,引导学生总结概括应用小数的性质时要注意的问题,突出小数末尾的“0”才能去掉,加深对小数性质的理解。 例 5 小数的大小比较在三年级已经学习过小数的大小比较,且大多有具体情境的支 撑。这部分知识学生理解起来并不难。需要注意的是:前面各教学的比较整数大小的方法,有些也可以应用于比较小数的大小,有些需要在认识上作些必要的调整。如在整数中,位数多的数一定比位数少的数大(四位数一定大于三位数),而在小数中未必一定如此(三位小数不一定小于四位小数)。因此,从比较整数的大小到比较小数的大小,不是单纯的认知同化和方法迁 移,而是既有承前的一面,又有发展的一面。(三)小数点移动引起小数大小的变化例 1 注重知识对比,感知小数点移动与小数大小变化的关系。为 下面单位换算提供方法基础。借助主题图呈现孙悟空变长金箍棒打小妖的情景,让学生直观感知到小数点的移动与金箍棒长度的变化是有关系的,小数点越往右 移,小数就越大,为后面的观察规律奠定基础。那么小数点移动引起小数大小的变化存在什么样的规律呢?由于知识理解起来相对抽象,教师要发挥好指导作用。可以按照教材中提供的方法,将金箍棒的长度由小数形式转化成整数形式,以便于观察规律;也可以借助小数的意义中计数单位之间十进制关系。 10 个0.009 是 0.09,10 个 0.09 是 0.9,从而发现小数点向右移动一位,小数就扩大到原数的 10 倍。多维度地揭示规律。在充分探究、 归纳的基础上,总结小数点移动引发小数大小变化的规律。需要注意的是:孩子往往习惯按照从上到下,小数点往右移动的顺序找规律,教学中要引导反方向寻找小数点往左移引起小数变化的规律。对于这个规律要加强巩固练习,尤其是叙述语言的准确上下功夫,建立起小数点“左移变小,右移变大”“变小用除法,变大用乘法”的思维模型,防止学生小数点方向移反的情况,在初学时对于学 生来说这是一个难点。例 2 的教学是在充分理解的基础上的一个运用。可以引导学生在弄清楚题意的基础上独立探究解决。例如把 0.07 扩大到原来的 10 倍,要理解“原来”指的是 0.07,扩大是小数点向右移动,扩大到原来的“10 倍”是移动一位。同时要用相应的乘除法算式进行理解。例 3 是新添加的一道解决问题,这道例题是对小数点移动引起小 数变化应用的一种补充。需要一个独立课时完成。对于解决问题类型的题目,学生解答起来都比较的吃力。我认为要解决好两个问题:一是通过条件和问题学会建立数量关系;二是要 找出解题的原型知识。阅读与理解部分:要求学生弄清条件和问题,分析题意。这是建 立数量关系的基础。分析与解答:这是解决问题的核心部分。首先要通过分析条件与问题,建立数量关系:就是汇率10000=美元,学生不会列式或列错算式,很多时候就是因为不会建立正确的数量关系。在解答问题时要找到运算的原型, 0.156310000,实际上就是把小数扩大到原来的10000 倍,小数点向右移动 4 位。至此完成算式的计算解答步骤。这是新知的运用,由于计算的思维定势,学生可能想不到运用移动小数点解决问题,是教学的重点和难点。另外关于汇率的知识学生可能不 懂,在阅读和理解的时候教师要进行解释说明。(四)小数与单位换算单位换算学生都比较熟悉,低级单位、高级单位概念及进率也接触过。其教学的难点是能综合运用计量单位间的进率、低高级单位间的换算方法、小数的性质、小数点移位的规律等知识进行单位换算。教材从解决小朋友身高排序入手,感受到不同单位、不同形式的数据太乱,需要改写成统一的形式以便于比较。从而使学生感受到改写的必要性,是解决现实问题的需要。另外要观察对比四个数量的特点,发现 1m45cm 有两个单位名称,指出这样的名数是复名数;而只有一个单位的80cm 是单名数。其次结合数据回忆低级单位与高 级单位如何确定。例 1 是把单名数改写成小数。可以让学生利用原有知识进行探究解答。解答之前要观察两个单位,把低级单位改写成高级单位,单位变大了,数是需要变大还是变小呢?在理解基本思路的基础上再去尝试改写。此处要给学生充足的时间进行观察思考,其思路有两个:一是直接利用计数单位的关系,通过分数形式直接改写成小数。这一点学生有三年级分数的知识基础;另一个是利用低级单位的数改写成高级单位的数要除以进率,再结合小数点移动的规律进行数的改写。学生要反复练习改写的叙述过程,教参提出了“明方向”“确进率”“移 小数点”的概括用语方便记忆。复名数改写成单名数,其核心是单位相同的名数不需要变化,只把单位不同的名数改写成指定单位的名数,再把两个数相加就可以 了。例 2 与例 1 的方法是互逆的,可以直接迁移例 1 的知识进行自主 探究,给学生充足的时间进行表述。由于两个例题的情况容易混淆,教师要充分发挥板书的汇总功能。让学生充分对比两种情况所采取的不同方法,主要是从“明方向”、“移小数点”入手观察,从而更好地归纳出单位换算的不同方法。 (五)小数的近似数例 1 求小数的近似数,教学的着力点放在理解精确度上。学生已经会求整数的近似数,并初步能使用“四舍五入”法,在教学前可进行一些求整数近似数的练习,唤起学生的经验。例 1 的教学内容主要包括三点:第一点弄懂保留一位小数就是“精确到十分位”、保留两位小数就是“精确到百分位”。第二点理解“保留两位小数或一位小数”的方法,让学生思考“精确到百分位应该看小数部分的哪一位?”然后用“四舍五入”法写出0.984 的近似数。教材在后面提出了“如何保留整数”的问题,要求学生自己探索,叙述求近似数的方法。第三点教学内容是,近似数“哪一个更精确一些”,体会精确程度。1.5 保留一位小数,精确到十分位;1.50 保留两位小数,精确到百分位。虽然 1.5 和 1.50 从小数性质的角度上看,是大小相等的。但是,在精确度上看,它们的精确程度不同。也正因为如此, 在表示近似数时,小数末尾的 0 不能去掉。例 2、例 3 是改写较大的整数,两个例题以星球之间的距离为教学素材,其意义在于学生感兴趣,能丰富他们的科学知识。而且能感到这些较大的整数,读、写都不太方便,乐意改变这些数的单位,以简化读、写方法。教学分三个层次进行。第一个层次把 384400 改写成用“万”作单位的数,着力教学改写的思路,并初步得出改写的方法。384400 是一个较大的数,通过读数能够知道它是 38 个万和 4400个一组成的数。所以,用“万”作单位表示这个数,“38”应该是整数部分里的数,“4400”应该是小数部分里的数。这是比较抽象的推理,对学生来说可能有点难。还可以从 384400 比 38 万大、比 39 万小,来理解这个数改写成以“万”作单位的数只能是个小数,整数部分只能是“38”。教材给 384400 里的“4400”和 38.44 里的“44”加上同样的色块,显示了上面所说的思考过程,从而得出改写的关键一步:在万位的右边点上小数点。至于改写后的数要写出单位“万”,以及根据小数性质化简,都是学生能够解决的,教材不再过多强调了。第二个层次是把 778330000 改写成用“亿”作单位的数,在上一层次“扶”的基础上,采取了“放”的策略,鼓励学生独立完成改写。教材只是通过问题“怎样改写成用亿作单位的数呢?”引起学生思考,组织他们讨论,整理出改写的思路,体会改写方法的要领。例 3 在改写的同时,又提出了保留一位小数的要求。将改写和求小数的近似数结合起来,一方面巩固了改写的方法,另一方面通过对两个结果的对比,帮助学生更好地理解求近似数和改写成指定单位数的区别,即:虽然都改变了原数的形式,但改写不改变数的大小,而求近似数改变了数的大小。这两个知识在练习时学生容易混淆,要抓 住问题的本质,加强相应的对比练习。本单元的知识容量大,也越来越抽象,学生需要投入思考。所以老师们上课一定要把节奏放缓,每提一个问题,要让孩子自己审题、明确要求、缜密思考,尝试自己解决。我们要允许孩子在探究过程中犯错误、在练习中有反复,讲求知识获得的经历过程,达到体验深刻 的目的。六、实践性作业(一)收集数学信息根据所学内容,收集在日常生活中妈妈买菜、买食品、买衣服的小票以及商品袋上的标签。说一说小数的整数部分代表什么?小数部 分代表什么?进一步理解小数的意义。(二)动手摆数字卡片用数字卡片2 3 4和小数点.,能够组成多少个不同的小数(每张卡片都要用上)?(三)思维导图本单元新知学完后,为了让零散的数学知识得到系统的整理,提升学生的知识梳理能力,思维发展能力,建议开展数学思维导图的实践性作业。七、小数的意义和性质单元练习设计练习是反馈的重要手段,是课堂教学的延伸,也是师生信息交流的一个窗口,针对这一重要环节,现设计了如下有坡度、有层次的练 习题。单元小练习一.填空1.0.586 是由( )个 0.1、( )个 0.01 和( )个 0.001 组成的。 (考查目的:小数的数位顺序及计数单位。)2. 一个数的百位、个位、十分位、千分位上都是最大的一位数,其它 各个数位上都是 0,这个数是( )。(考查目的:小数的数位顺序及小数的写法。)3. 把 0.5 改写成用百分之一作单位的数是( )。(考查目的:小数的性质及小数的计数单位。)4. 蜂鸟是世界上最小的鸟,身长 5 厘米,合( )米,体重不超过 2 克,合( )千克。(考查目的:名数的改写。)5. 一个三位小数,保留两位小数后的近似数是 7.00,这个小数最大 是( ),最小是( )。(考查目的:求小数近似数的灵活应用。)二.选择1. 百分位是小数点右边第( )位。A. 二 B. 三 C. 一2. 下面各数中,要读出两个“零”的数是( )。A. 2.10008 B. 210.008 C.2100.083. 在下列小数中,去掉“0”而大小不变的小数是( )。A. 5.830 B. 0.006 C. 7.08(考查目的:小数的性质及小数的数位与计数单位。)4. 把 9 先缩小到它的 1/10,再扩大到新数的 100 倍,结果是原来的( )倍。A. 100 B. 1000 C. 10(考查目的:小数点移动引起小数大小的变化规律及应用。)5. 把 499630000 改写成用“亿”作单位并精确到百分位是( )位。 A. 4.99 B. 5.0 C. 5.00(考查目的:改写成以“亿”为单位的小数求近似数的方法。) 三.解答1.100 千克小麦可磨面粉 70 千克,平均每千克小麦可磨面粉多少千 克?一吨小麦可磨面粉多少千克?(考查目的:质量单位间的进率,根据数量关系利用小数点移动的规 律计算解决实际问题。)2. 何龙每分钟走 25 米,他1 小时 40 分可以走多少米?合多少千米?(考查目的:运用速度、时间、路程间的数量关系解决实际问题及应 用进率、小数点移动的规律进行名数的改写。)3. 公园健身场是一个长方形,把健身场的长和宽分别缩小到原数的 1/100 后,如下图所示。0.2 米0.5 米(1)请算出这个健身场的实际长和宽。(2)它的实际占地面积是多少平方米?(考查目的:根据缩小到原数的结果逆推出原数,利用小数点移动的 规律计算解决实际生活中的问题。)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!