资源描述
薄膜混合集成电路的制作工艺中心议题:多晶硅薄膜的制备摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉 积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化 学反应气相沉积(PECVD等,进行详细说明。关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA);快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD)引言多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备 的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺 可分为两大类:一类是高温工艺,制备过程中温度高于600r,衬底使用昂贵的石英,但制 备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600 r,可用廉价玻璃作衬底, 因此可以大面积制作,但是制备工艺较复杂。1薄膜集成电路的概述在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、 器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体 芯片或单片集成电路。2物理气相沉积-蒸发物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发 法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均 自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。i至真空泵3等离子体辅助化学气相沉积-PECVD传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进 反应、降低温度。降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化 与性能恶化;避免薄膜与衬底中出现较大的热应力等。电扱射频电圧衬底4低压化学气相沉积(LPCVD)I1 N+SiO2Np+篡晶硅基区股射区掩模(RIE SiO2)这是一种直接生成多晶硅的方法LPCVD是集成电路中所用多晶硅薄膜的制备中普遍采 用的标准方法,具有生长速度快,成膜致密、均匀,装片容量大等特点。多晶硅薄膜可采用 硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参数是:硅烷压力为13.326.6Pa, 沉积温度Td=580630C,生长速率510nm/min。由于沉积温度较高,如普通玻璃的软化 温度处于500600C,则不能采用廉价的普通玻璃而必须使用昂贵的石英作衬底。LPCVD 法生长的多晶硅薄膜,晶粒具有110择优取向,形貌呈“V”字形,内含高密度的微挛晶缺 陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面受到一定限制。虽然减少硅 烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度的增加,对载流子的迁移率与器件的 电学稳定性产生不利影响。5固相晶化(SPC)#晶/祁If束光一樹电极SiNaSiN,a- SiM.玻瑞所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是一种间 接生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550C左右沉积a-Si:H 薄膜,然后将薄膜在600C以上的高温下使其熔化,再在温度稍低的时候出现晶核,随着温 度的降低熔融的硅在晶核上继续晶化而使晶粒增大转化为多晶硅薄膜。使用这种方法,多晶 硅薄膜的晶粒大小依赖于薄膜的厚度和结晶温度。退火温度是影响晶化效果的重要因素,在 700 r以下的退火温度范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒 尺寸越大;而在700r以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围 内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒尺寸还 与初始薄膜样品的无序程度密切相关,T.Aoyama等人对初始材料的沉积条件对固相晶化的 影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越低,晶粒尺寸越大。由 于在结晶过程中晶核的形成是自发的,因此,SPC多晶硅薄膜晶粒的晶面取向是随机的。相 邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高SPC多晶硅的性能。这种 技术的优点是能制备大面积的薄膜,晶粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成 本低,工艺简单,易于形成生产线。由于SPC是在非晶硅熔融温度下结晶,属于高温晶化过 程,温度高于600r,通常需要1100 r左右,退火时间长达io个小时以上,不适用于玻璃 基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取景器等。6准分子激光晶化(ELA)激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生的高能量 入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应,使a-Si薄膜在瞬间 达到1000C左右,从而实现a-Si向p-Si的转变。在此过程中,激光脉冲的瞬间(1550ns) 能量被a-Si薄膜吸收并转化为相变能,因此,不会有过多的热能传导到薄膜衬底,合理选 择激光的波长和功率,使用激光加热就能够使a-Si薄膜达到熔化的温度且保证基片的温度 低于450C,可以采用玻璃基板作为衬底,既实现了p-Si薄膜的制备,又能满足LCD及OEL 对透明衬底的要求。其主要优点为脉冲宽度短(1550ns ),衬底发热小。通过选择还可获 得混合晶化,即多晶硅和非晶硅的混合体。准分子激光退火晶化的机理:激光辐射到a-Si 的表面,使其表面在温度到达熔点时即达到了晶化域值能量密度Ec。a-Si在激光辐射下吸 收能量,激发了不平衡的电子-空穴对,增加了自由电子的导电能量,热电子空穴对在热化 时间内用无辐射复合的途径将自己的能量传给晶格,导致近表层极其迅速的升温,由于非晶 硅材料具有大量的隙态和深能级,无辐射跃迁是主要的复合过程,因而具有较高的光热转换 效率,若激光的能量密度达到域值能量密度Ec时,即半导体加热至熔点温度,薄膜的表面 会熔化,熔化的前沿会以约10m/s的速度深入材料内部,经过激光照射,薄膜形成一定深度 的融层,停止照射后,融层开始以108-1010K/S的速度冷却,而固相和液相之间的界面将以 1-2m/s的速度回到表面,冷却之后薄膜晶化为多晶,随着激光能量密度的增大,晶粒的尺 寸增大,当非晶薄膜完全熔化时,薄膜晶化为微晶或多晶,若激光能量密度小于域值能量密 度Ec,即所吸收的能量不足以使表面温度升至熔点,则薄膜不发生晶化。一般情况下,能量 密度增大,晶粒增大,薄膜的迁移率相应增大,当Si膜接近全部熔化时,晶粒最大。但能 量受激光器的限制,不能无限增大,太大的能量密度反而令迁移率下降。激光波长对晶化效 果影响也很大,波长越长,激光能量注入Si膜越深,晶化效果越好。ELA法制备的多晶硅 薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷少、电学特性好、迁移率高达到 400cm2/v.s,是目前综合性能最好的低温多晶硅薄膜。工艺成熟度高,已有大型的生产线设 备,但它也有自身的缺点,晶粒尺寸对激光功率敏感,大面积均匀性较差。重复性差、设备 成本高,维护复杂。7快速热退火(RTA)热能(或者等离子体能)SiH4(原料气体)多晶Si一般而言,快速退火处理过程包含三个阶段:升温阶段、稳定阶段和冷却阶段。当退 火炉的电源一打开,温度就随着时间而上升,这一阶段称为升温阶段。单位时间内温度的变 化量是很容易控制的。在升温过程结束后,温度就处于一个稳定阶段。最后,当退火炉的电 源关掉后,温度就随着时间而降低,这一阶段称为冷却阶段。用含氢非晶硅作为初始材料, 进行退火处理。平衡温度控制在600C以上,纳米硅晶粒能在非晶硅薄膜中形成,而且所形 成的纳米硅晶粒的大小随着退火过程中的升温快慢而变化。在升温过程中,若单位时间内温 度变化量较大时(如100C/s),贝U所形成纳米硅晶粒较小(1.615nm);若单位时间内温度变 化量较小(如1C/s),则纳米硅粒较大(2346nm)。进一步的实验表明:延长退火时间和提 高退火温度并不能改变所形成的纳米硅晶粒的大小;而在退火时,温度上升快慢直接影响着 所形成的纳米硅晶粒大小。为了弄清楚升温量变化快慢对所形成的纳米硅大小晶粒的影响, 采用晶体生长中成核理论。在晶体生长中需要两步:第一步是成核,第二步是生长。也就是 说。在第一步中需要足够量的生长仔晶。结果显示:升温快慢影响所形成的仔晶密度若单 位时间内温度变化量大,则产生的仔晶密度大;反之,若单位时间内温度变化量小,则产生的 仔晶密度小。RTA退火时升高退火温度或延长退火时间并不能消除薄膜中的非晶部分,薛清 等人提出一种从非晶硅中分形生长出纳米硅的生长机理:分形生长。从下到上,只要温度不 太高以致相邻的纳米硅岛不熔化,那么即使提高退火温度或延长退火时间都不能完全消除其 中的非晶部分。RTA退火法制备的多晶硅晶粒尺寸小,晶体内部晶界密度大,材料缺陷密 度高,而且属于高温退火方法,不适合于以玻璃为衬底制备多晶硅。8等离子体增强化学反应气相沉积(PECVD)等离子体增强化学反应气相沉积(PECVD)法是利用辉光放电的电子来激活化学气相沉积 反应的。起初,气体由于受到紫外线等高能宇宙射线的辐射,总不可避免的有轻微的电离, 存在着少量的电子。在充有稀薄气体的反应容器中引进激发源(例如,直流高压、射频、脉 冲电源等),电子在电场的加速作用下获得能量,当它和气体中的史性粒子发生非弹性碰撞 时,就有可能使之产生二次电子,如此反复的进行碰撞及电离,结果将产生大量的离子和电 子。由于其中正负粒子数目相等。故称为等离子体,并以发光的形式释放出多余的能量,即 形成“辉光”。在等离子体中,由于电子和离子的质量相差悬殊,二者通过碰撞交换能量的 过程比较缓慢,所以在等离子体内部各种带电粒子各自达到其热力学平衡状态,于是在这样 的等离子体中将没有统一的温度,就只有所谓的电子温度和离子温度。此时电子的温度可达 104C,而分子、原子、离子的温度却只有25300C。所以,从宏观上来看,这种等离子 的温度不高,但其内部电子却处于高能状态,具有较高的化学活性。若受激发的能量超过化 学反应所需要的热能激活,这时受激发的电子能量(110eV)足以打开分子键,导致具有化 学活性的物质产生。因此,原来需要高温下才能进行的化学反应,通过放电等离子体的作用, 在较低温度下甚至在常温下也能够发生。V直迢龙PMCK土佟NM(E8.1 PECVD法沉积薄膜的过程可以概括为三个阶段: .SiH4分解产生活性粒子Si、H、SiH2和SiH3等; .活性粒子在衬底表面的吸附和扩散; .在衬底上被吸附的活性分子在表面上发生反应生成Poly-Si层,并放出H2;研究表面,在等离子体辅助沉积过程中,离子、荷电集团对沉积表面的轰击作用是影响 结晶质量的重要因素之一。克服这种影响是通过外加偏压抑制或增强。对于采用PECVD技术 制备多晶体硅薄膜的晶化过程,目前有两种主要的观点.一种认为是活性粒子先吸附到衬底 表面,再发生各种迁移、反应、解离等表面过程,从而形成晶相结构,因此,衬底的表面状态对 薄膜的晶化起到非常重要的作用另一种认为是空间气相反应对薄膜的低温晶化起到更为重 要的作用,即具有晶相结构的颗粒首先在空间等离子体区形成,而后再扩散到衬底表面长大 成多晶膜。对于SiH4:H2气体系统,有研究表明,在高氢掺杂的条件下,当用RF PECVD的方法 沉积多晶硅薄膜时,必须采用衬底加热到600r以上的办法,才能促进最初成长阶段晶核的形 成。而当衬底温度小于300r时,只能形成氢化非晶硅(a-Si:H)薄膜。以SiH4:H2为气源沉 积多晶硅温度较高,一般高于600r,属于高温工艺,不适用于玻璃基底。目前有报道用 SiC14:H2或者SiF4:H2为气源沉积多晶硅。参考文献:1) 薄膜的制备方法,书籍作者:宁兆元等编著, 图书出版社:科学出版社。2) 薄膜材料的制备方法,作者:张美芳 林飞, 图书出版社:广东化工3) 谢广超李兰侠.集成电路应用J.2005(6):10
展开阅读全文