sob高考数学考前必看系列材料之六.doc

上传人:jian****018 文档编号:9037996 上传时间:2020-04-02 格式:DOC 页数:7 大小:43.50KB
返回 下载 相关 举报
sob高考数学考前必看系列材料之六.doc_第1页
第1页 / 共7页
sob高考数学考前必看系列材料之六.doc_第2页
第2页 / 共7页
sob高考数学考前必看系列材料之六.doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
高考数学考前必看系列材料之六应试技巧篇经过紧张有序的高中数学总复习,高校招生考试即将来临,不少同学认为高考数学的成败已成定局。其实不然,由于这次考试与期中、期末、模拟考试不同,社会的注目,家庭的热切关心,老师的期望,考试成绩又与同学们的切生利益相关,由于重要,可能导致部分同学精神上高度紧张,考前想的很多,会产生波动;但是,我们只要讲究高考数学应试的艺术,还是能把高考数学成绩提高一个档次。一、高考应试心理、策略、技巧高考要取得好成绩,首先要有扎实的基础知识、熟练的基本技能和在长年累月的刻苦钻研中培养起来的数学能力,同时,也取决于临场的发挥。下面,我们结合数学科的特点和高考阅卷的经验,谈几条考试的建议,以便使同学们临场不慌,并能在紧张的考试中最佳发挥。1、提前进入“角色”高考前一个晚上睡足八个小时,吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动,进入单一的数学情境。如:1清点一下用具是否带全(笔、橡皮、作图工具、准考证、手表等)。2把一些基本数据、常用公式、重要定理“过过电影”。3最后看一眼难记易忘的结论。(这些你记住了吗?)4互问互答一些不太复杂的问题。(启动你的思维)一些经验表明,“过电影”的成功顺利,互问互答的愉快轻松,不仅能够转移考前的恐惧,而且有利于把最佳竞技状态带进考场。2、精神要放松,情绪要自控情绪乐观、思维活跃、适度焦虑、激发动机、积极暗示、挖掘潜能、体育锻炼、心境乐观、学习之余学会休闲。最易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种:转移注意法:避开监考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,回忆考试原则,有效得分时间。自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到发卷时。3、迅速摸透“题情”刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事。1. 顺利解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪立即稳定)。2对不能立即作答的题目,可一面通览,一面粗略分为A、B两类:A类指题型比较熟悉、估计上手比较容易的题目,B类是题型比较陌生、自我感觉比较困难的题目。3做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题等。通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。4、 信心要充足,暗示靠自己答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。对于海中的学生要求做到:坚定信心、步步为营、力克难题。考试全程都要确定“人易我易,我不大意;人难我难,我不畏难”的必胜信念,使自己始终处于最佳竞技状态。5、三先三后在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下大部分题目或题目的大部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。重点:1先易后难。就是说,先做简单题,再做复杂题;先做A类题,再做B类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。2001、2002年不再由易到难,最后三题未必比前面的题难,难、易因人而异。2先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。3先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶” 转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”。6、一细一实就是说,审题要细,做题要实。题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢。找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原理写一步就可以了,至于不是题目考查的过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。7、分段得分对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”踩上知识点就得分,踩得多就多得分。鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。1对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分。2对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。 缺步解答如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。跳步答题解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。退步解答“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。辅助解答一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真学习认真成绩优良给分偏高。有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是一种能力。8、以快为上高考数学试卷共有22个题,考试时间为两个小时,平均每题约为5.5分钟。为了给解答题的中高档题留下较充裕的时间,每道选择题、填空题应在二至三分钟之内解决。若这些题目用时太长,即使做对了也是“潜在丢分”,或“隐含失分”。一般,客观性试题与主观性试题的时间分配为4:6。9、立足中下题目,力争高水平平时做作业,都是按所有题目来完成的,但高考却不然,只有个别的同学能交满分卷,因为时间和个别题目的难度都不允许多数学生去做完、做对全部题目,所以在答卷中要立足中下题目。中下题目通常占全卷的80%以上,是试题的主要构成,是考生得分的主要来源。学生能拿下这些题目,实际上就是数学科打了个胜仗,有了胜利在握的心理,对攻克高档题会更放得开。10、立足一次成功,重视复查环节,不争交头卷答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错。在确信万无一失后方可交卷,宁可坚持到终考一分钟,也不做交卷第一人。二、解题思考步骤、程序表步 骤思 考 程 序观 察1 要求解(证)的问题是什么?它是哪种类型的问题?2 已知条件(已知数据、图形、事项、及其与结论部分的联系方式)是什么?要求的结论(未知事项)是什么?3 所给图形和式子有什么特点?能否用一个图形(几何的、函数的或示意的)或数学式子(对文字题)将问题表示出来?能否在图上加上适当的记号?4 有什么隐含条件?联 想1 这个题以前做过吗?2 这个题以前在哪里见过吗?3 以前做过或见过类似的问题吗?当时是怎样想的?4 题中的一部分(条件,或结论,或式子,或图形)以前见过吗?在什么问题中见过的?5 题中所给出的式子、图形,与记忆中的什么式子、图形相象?它们之间可能有什么联系?6 解这类问题通常有哪几种方法?可能哪种方法较方便?试一试如何?7 由已知条件能推得哪些可知事项和条件?要求未知结论,需要知道哪些条件(需知)?8 与这个问题有关的结论(基本概念、定理、公式等)有哪些?转 化1 能否将题中复杂的式子化简?2 能否对条件进行划分,将大问题化为几个小问题?3 能否将问题化归为基本命题?4 能否进行变量替换、恒等变换或几何变换,将问题的形式变得较为明显一些?5 能否形数互化?利用几何方法来解代数问题?利用代数(解析)方法来解几何问题?6 利用等价命题律(逆否命题律、同一法则、分断式命题律)或其他方法,可否将问题转化为一个较为熟悉的等价命题?7 最终目的:将未知转化为已知。答 题1 推理严密,运算准确,不跳步骤;实在不能完成时,该跳步就跳步;2 规范的表达,完整的步骤(不怕难题不得分,就怕每题都扣分);3 检查、验证结论;4 注意答题卡(看清A、B卡)填涂正确无误。三、如何解决综合性问题提高解数学综合性问题的能力是提高高考数学成绩的根本保证。解好综合题对于那些想考一流大学,并对数学成绩期望值较高的同学来说,是一道生命线,往往“成也萧何败也萧何”;对于那些定位在二流大学的学生而言,这里可是放手一搏的好地方。1、综合题在高考试卷中的位置与作用:数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。2、解综合性问题的三字诀:“三性”:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好“三性”,即(1)目的性:明确解题结果的终极目标和每一步骤分项目标。(2)准确性:提高概念把握的准确性和运算的准确性。(3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。“三化”:(1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。(2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。(3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。“三转”:(1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。“三思”:(1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。(2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。(3)思辩:即在解综合题时注意思路的选择和运算方法的选择。“三联”:(1)联系相关知识,(2)连接相似问题,(2)联想类似方法。3、对平时综合练习的反思:平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。再最后的自由复习阶段也可选取部分做过的综合卷中的“压轴题”进行反思,主要研究:审题分析的过程(如:寻求条件与结论联系,与基础知识的联系,与平时基本方法的联系)、隐含条件的运用、计算方法及准确性。
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!