资源描述
毕 业 论 文学生姓名陈碧玉学 号161001049学院 数学科学学院专 业数学与应用数学题 目浅谈数形结合思想在中学数学解题中的应用指导教师王爱峰 副教授/博士 (姓 名) (专业技术职称/学位)2014年05月摘 要: 数形结合是中学数学中一种十分常见且重要的数学思想之一. 利用数形之间的相互转化,可以化繁为简、化难为易、化抽象为具体,从而达到简洁明了的解题效果. 本文主要探讨了数形结合思想在集合、函数、方程、几何、三角函数、线性规划、复数问题中的应用.关键词: 数形结合,线性规划,复数,应用Abstract: The combination of number and shape is one of a very common and important mathematical thought in middle school mathematics. Using mutual conversion between number and form, we can make hard problems simple and easy and turn the abstract to the concrete. In this paper, we mainly discuss the combination of number and shape in collection、functions、equations、geometry、trigonometric functions、linear programming and complex number.Keywords: the combination of number and shape, linear programming, complex number,application目 录1 前言42 数形结合思想在中学数学中的应用 52.1 数形结合思想在集合中的应用52.2 数形结合思想在函数中的应用62.3 数形结合思想在方程与不等式中的应用112.4 数形结合思想在三角函数中的应用 132.5 数形结合思想在中学几何中的应用 142.6 数形结合思想在线性规划中的应用 152.7 数形结合思想在复数中的应用 16结 论 18参考文献 19致 谢201 前言数学思想,是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动产生的结果,它是对数学事实和数学理论经过概括后产生的本质认识. 基本数学思想则是应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想.中学阶段的基本数学思想包括:分类整合思想、归纳推理思想、数形结合思想、函数思想、方程思想、整体思想、分类讨论思想、转化思想、类比思想、抽样统计思想等. 在中学阶段的数学教学中时时刻刻都渗透着这些基本数学思想,如果教师能够将这些基本的思想真正落实到课堂学习中,那么它就能够发展学生学习数学的能力. 本文主要探讨了这些基本数学思想中的数形结合思想,它是一种十分重要且常见的思想方法之一,贯穿于整个中学数学的教学过程.我国著名数学家华罗庚曾经说过:数与形,本是相依倚,焉能分作两边飞;数无形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数统一体,永远联系切莫分离. 这就说明数与形是紧密联系、不可分割的.而数形结合主要是指数学语言与几何图形之间一一对应的关系.数形结合思想的实质就是通过数学语言与几何图形之间的相互转化,把抽象的数量通过抽象化的方法,转化为适当的几何图形,从图形的结构直观地发现数量之间存在的内在联系,解决数量关系的数学问题;或者是把关于几何图形的问题,用数量或方程等来表示,从它们的结构研究几何图形的性质和特征. 数形结合思想可以使某些抽象的不易于理解的数学问题生动直观,能够变抽象问题为形象问题,便于学生把握数学问题的本质. 此外,借助数形结合的方法使得很多抽象的问题迎刃而解. 这种思想的应用非但可以培养学生的自己观察思考、综合运用各种知识的能力,而且还培养了学生的自主创新的能力,增强了学生发散性思维的能力.数形结合思想作为一种基本的数学思想,其应用一般可以分为以下两种情形:第一种情形就是“以数解形”,而第二种情形则是“以形助数”. “以数解形”就是将“形”的问题转化为用数量关系去解决,运用代数,函数知识进行讨论,它是将技巧性极强的的推理论证转化为可操作的代数运算,起到了化难为易的作用. “以形助数”顾名思义就是将“数”的问题转化为图形的问题来解决,直观生动,便于理解和解题.在运用数形结合思想分析和解决问题时,要注意三点:第一是明白概念和运算的几何意义,对于题目中的的条件和结论既分析其代数意义又要分析其几何意义;第二是恰当设立参数、合理运用参数,建立正确关系,做好数与形的相互转化;第三是正确确定参数的取值范围.下面我将具体从这几个方面来探讨数形结合思想在中学数学解题中的应用. (1)在集合问题中的应用. (2)在函数问题中的应用. (3)在方程、不等式问题中的应用.(4)在三角函数问题中的应用. (5)在几何问题中的应用. (6)在线性规划问题中的应用. (7)在复数问题中的应用. 通过对这些例题的分析讲解充分展现数形结合思想在中学数学解题中的特点,从而将数形结合思想运用到实际教学中.2 数形结合思想的应用2.1 数形结合思想在集合中的应用在集合运算问题中,当所给问题的数量比较复杂,不好找线索时,我们常常要借助数轴、韦恩图来处理集合中的交、并、补等运算,利用直观的图形,从而使问题更加简化,运算更加快捷.例1 已知集合,,则等于多少?解 如图1.集合的解集为,集合的解集为,所以 .图1 例2 某班有个学生,每人至少参加一个活动小组,参加数、理、化的人数分别为同时参加数、理小组有人,同时参加理、化的有人,同时参加数、化的有人,问同时参加数、理、化的有多少人?分析 本题中,我们可以用 三个圆分别表示参加数、理、化的人(如图2),则三个圆的公共部分就是表示同时参加数、理、化三个活动小组的人数. 假设用来表示集合中的元素,则有 ,即,所以,因而同时参加数、理、化活动小组的有人.数理化图22.2 数形结合思想在函数中的应用利用函数图像来研究函数的性质是一般常见的数学方法之一.函数图像的几何特征和数量特征紧密结合,体现了数形结合的特征和方法. 利用函数图像的直观性来讨论函数的最值问题,求解变量的取值范围,运用数形结合思想考察转化能力,逻辑思维能力,是函数教学中的重要内容之一.例3 若函数是定义在上的偶函数,在上是减函数,且,求的的取值范围.解 因为是定义在上的偶函数,所以关于轴对称,又因为在上为减函数,且,因此可以作出图3,所以由图像性质可知 ,所以.图3例4 求函数的最小值.分析 观察的特点,直接从代数方面求解,学生很难解答. 本题中,我们需要借助数形结合的思想,以此思想为转化手段,让学生巧妙地使用两点间的距离公式.解 .令,则问题转化为在轴上求一点,使有最小值. 图4如图4所示,由于在轴同侧,故 取关于轴的对称点,因此 .例5 函数,当时,恒成立,求的取值范围.分析 本题是二次函数问题中典型的“轴变区间定”问题.根据函数解析式画出函数图像,分情况讨论,思路清晰,不易出错.解 由解析式知,函数的对称轴为. 当,即时(图5),在上单调递增,所以 当时,有,依题意得,即,所以 不存在. 图6 当,即时(图6),在上单调递减,在上单调递增.所以 当时,有.依题意得,即,所以. 图6 当,即时(图7),在上单调递增,所以 当时,有.依题意得,即,所以. 图7综上所述.例6 在平面直角坐标系中,若曲线与直线有四个公共点,求实数的取值范围.解 由题意得,是偶函数,且作出曲线的图像(如图8)图8当时,直线与曲线有四个公共点;当时,要使它们有四个公共点,则需与有一个公共点,此时,即方程有两个相等的实数解,从而,故;当时,根据对称性可得;从而满足条件的的取值范围是.2.3 数形结合思想在方程与不等式中的应用很多情况下,我们在处理一些不能使用常规方法来解答的复杂方程时,通常把方程根的问题看作两个函数的交点问题,通过作图就可以很好地解答出来. 处理不等式的问题时,根据题目的条件和结论,画出图形,将图形和联系题目中的相关函数相互结合,重点分析其几何意义,揭示图形所蕴含的数量关系,借助图形探求其解题思路.例7 设方程,试讨论取不同范围的值时其不同解的个数的情况.解 可以将题设问题转化为确定两个函数与图像交点个数的情况的问题(图9). 由于函数一直表示所有平行于轴的直线,而分段函数可以先表示为函数,再画出的图像,进一步画出函数的图像,从而由图像可以直接看出 图9(1) 当时,没有交点,这时原方程无解;(2) 当时,有两个交点,原方程有两个不同的解,分别是与;(3) 当时,有四个不同的交点,原方程有四个不同解;(4) 当时,有三个交点,原方程有三个不同解;(5) 当时,有两个交点,原方程有两个不同解.通过图像我们可以清楚地看出在不同范围内两个函数交点的个数,化繁为简,提高解题的效率.例8 设,求证:.证明 这是一个代数不等式的证明问题,已知条件简单,难以下手. 但是由问题中的代数式的结构自然地联想到三角形余弦定理,所以.又因为,所以 可以表示是以为边, 为其夹角的三角形的第三边.同理,也有类似的几何意义.于是构造出如图10的四面体,使,且,由余弦定理得.同理,.图10在中,所以原不等式成立.例9 解关于的不等式.解 设,令,.在同一直角坐标系中分别作出函数和函数在时的图像,如图11所示 图11当时,和的函数值相等;当时,;当时,.从而可知原不等式的解是.2.4 数形结合思想在三角函数中的应用数形结合思想是处理三角函数有关问题的重要思想方法,通常有两个形式:一是利用单位圆解决角的范围或三角不等式问题;二是利用三角函数图像求方程解的个数问题,或已知方程解的个数,求方程中的字母参数的范围问题. 例10 设.求证.证明 由题设条件可以构造一个等腰直角三角形,如图12,设,,则.因为,又,所以,故,因此. 图122.5 数形结合思想在几何中的应用几何的特点是代数与几何相结合,处理几何问题的一般方法就是利用数形结合的思想,观察直线,圆和圆锥曲线在直角坐标系中图像的特点,从图形中获得解答问题的思路.例11 如图13,双曲线的左右焦点分别是,是双曲线上任意的一点,是的中点,且到点距离为,求点到此双曲线左准线的距离. 图13解 由题意知,双曲线的离心率,连接,两点和,两点,可知线段是的中位线,因为,所以,因而点到双曲线左准线的距离就是.2.6 数形结合思想在线性规划中的应用灵活运用数形结合的思想是解决线性规划问题的关键,利用数形结合思想巧妙地将代数问题转化为几何问题,借助所画的图像直观生动地来阐明数量的关系.例12 若不等式组所表示的平面区域是一个四边形,求实数的取值范围.解 如图14,可以作出上述不等式组中的前三个不等式所表示的平面区域,其中,分别为此平面区域的三个顶点,只有在直线和最后一个不等式的交点处于两点之间时,所表示的平面区域才是一个四边形,而此时. 图142.7 数形结合思想在复数中的应用将复数在平面上表现出来,复数就有了几何意义,与点对应,与向量对应,从而建立了复平面。一般解决复数问题,总是由复数联想到三角,几何等知识,将它们联系起来,不仅可便于理解、把握复数方面的问题,而且还能够提高分析问题、解决问题的能力.例13 设,求复数.解 根据复数的几何意义,可作出如图15所示的图形,为,为,为.因为,且点是的中点,所以,即,所以因为平行于轴,所以,所以,所以.图15结 论由上述的例子可知,数形结合是中学数学解题中重要的思想方法之一,并且有着广泛的应用.在学习过程中,培养学生的这种思想意识,巩固此方法的应用,不仅能优化解题思路,还能使学生的创新意识得到培养,加强学生综合运用的能力。在平时的学习和研究中我们要不断培养学生的这种思维意识,将图形与代数有机的结合起来,不断拓展我们的思维.在教学中也要注重培养学生数形结合思想方法的思维意识,教师要深层次地挖掘教材内容,将数形结合思想具体地渗透到实际问题中来,在寻求解决问题的方法中,让学生正确理解数与形紧密相连的关系,使之有机地结合起来.让学生真正做到心中有图,图中有数,利用数形结合思想简明答题,做到学以致用.参考文献1罗增儒.数学解题学引论M.陕西:陕西师范大学出版社.2冯艳丽.浅谈学生数形结合思想的培养J.教育研究,2007,12:129.3刘锋.数形结合的思想在高中数学解题中的应用J. 理科考试研究(高中版),2013, 20(9):22.4廖冬梅. 数形结合思想在高中数学中的应用J. 读写算(教育教学研究), 2011,(71):69-70.5孙志杰. 浅谈数形结合思想在三角函数中的运用J. 才智,2011,(30):151-152.
展开阅读全文