高中数学教程双曲线.doc

上传人:jian****018 文档编号:8315233 上传时间:2020-03-28 格式:DOC 页数:19 大小:2MB
返回 下载 相关 举报
高中数学教程双曲线.doc_第1页
第1页 / 共19页
高中数学教程双曲线.doc_第2页
第2页 / 共19页
高中数学教程双曲线.doc_第3页
第3页 / 共19页
点击查看更多>>
资源描述
双曲线及其标准方程(一)目的:1使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;2通过对双曲线标准方程的推导,提高学生求动点轨迹方程的能力;3使学生初步会按特定条件求双曲线的标准方程; 4使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5培养学生发散思维的能力重点:双曲线的定义、标准方程及其简单应用难点:双曲线标准方程的推导及待定系数法解二元二次方程组内容分析:“双曲线及其标准方程”是在讲完了“圆的方程”、“椭圆及其标准方程”之后,学习又一类圆锥曲线知识,也是中学解析几何中学习的重要的内容之一,它在社会生产、日常生活和科学技术止有着广泛的应用,大纲明确要求学生必须熟练掌握 本节教材仍是继续训练学生用坐标法解决方程与曲线有关问题的重要内容,对它的教学将帮助学生进一步熟悉和掌握求曲线方程的一般方法双曲线的定义和标准方程是本节的基本知识,所以必须掌握 而掌握好双曲线标准方程的推导过程又是理解和记忆标准方程的关键 应用双曲线的有关知识解决数学问题和实际应用问题是培养学生基本技能和基本能力的必要环节 坐标法是中学数学学习中必须掌握的一个重要方法,它充分体现了化归思想、数形结合思想,是用以解决实际问题的一个重要的数学工具 犹如前面学习的圆和圆锥曲线一样,双曲线也是一种动点的轨迹 双曲线和其方程分属于几何和代数这两个分立的体系,但是通过直角坐标系人们又将它们很好地结合在一起 因此我们要充分利用这节教材对学生进行好思想教育双曲线的标准方程,内容可分为二个课时,第一课时内容主要是双曲线的定义和标准方程以及课本中的例1;第二课时主要是课本中的例2、例3及几个变式例题 一、复习引入: 1 椭圆定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)两定点间距离较短,则所画出的椭圆较圆(圆)椭圆的形状与两定点间距离、绳长有关2.椭圆标准方程:(1) (2) 其中二、讲解新课:1双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于” 在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(两条平行线) 两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(两条射线) 双曲线的形状与两定点间距离、定差有关2双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证明取过焦点的直线为轴,线段的垂直平分线为轴 设P()为双曲线上的任意一点,双曲线的焦距是2()则 ,又设M与距离之差的绝对值等于2(常数),化简,得:,由定义 令代入,得:,两边同除得:,此即为双曲线的标准方程它所表示的双曲线的焦点在轴上,焦点是,其中若坐标系的选取不同,可得到双曲线的不同的方程,如焦点在轴上,则焦点是,将互换,得到,此也是双曲线的标准方程3双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种: 焦点在轴上时双曲线的标准方程为:(,); 焦点在轴上时双曲线的标准方程为:(,)(2)有关系式成立,且其中a与b的大小关系:可以为4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上名 称椭 圆双 曲 线图 象定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆。即 当22时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当22时,轨迹不存在平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线。即当22时,轨迹是双曲线当2=2时,轨迹是两条射线当22时,轨迹不存在标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时: 焦点在轴上时:注:是根据项的正负来判断焦点所在的位置常数的关 系 (符合勾股定理的结构), 最大,(符合勾股定理的结构)最大,可以三、讲解范例:例1 已知双曲线的焦点在轴上,中心在原点,且点,在此双曲线上,求双曲线的标准方程分析:由于已知焦点在轴上,中心在原点,所以双曲线的标准方程可用设出来,进行求解 本题是用待定系数法来解的,得到的关于待定系数的一个分式方程组,并且分母的次数是2,解这种方程组时利用换元法可将它化为二元二次方程组;也可将的倒数作为未知数,直接看作二元一次方程组 解:因为双曲线的焦点在轴上,中心在原点,所以设所求双曲线的标准方程为 ()则有 ,即解关于的二元一次方程组,得 所以,所求双曲线的标准方程为 变式例题1 点A位于双曲线上,是它的两个焦点,求的重心G的轨迹方程 分析:要求重心的轨迹方程,必须知道三角形的三个顶点的坐标,利用相关点法进行求解 注意限制条件 解:设的重心G的坐标为,则点A的坐标为因为点A位于双曲线上,从而有,即所以,的重心G的轨迹方程为 点评:求轨迹方程,常用的方法是直接求法和间接求法两种 例1是直接利用待定系数法求轨迹方程 本题则是用间接法(也叫代入法)来解题,补充本例是为了进一步提高学生分析问题和解决问题的能力 另外本题所求轨迹中包含一个隐含条件,它表现为轨迹上点的坐标应满足一个不等关系,而这一点正是学生容易忽略,造成错误的地方,所以讲解本题有利于培养学生数学思维的缜密性,养成严谨细致的学习品质 变式例题2 已知的底边BC长为12,且底边固定,顶点A是动点,使,求点A的轨迹分析:首先建立坐标系,由于点A的运动规律不易用坐标表示,注意条件的运用,可利用正弦定理将其化为边的关系,注意有关限制条件解:以底边BC 为轴,底边BC的中点为原点建立坐标系,这时,由得,即 所以,点A的轨迹是以为焦点,2=6的双曲线的左支 其方程为:点评:求轨迹方程的过程中,有一个重要的步骤就是找出(或联想到)轨迹上的动点所满足的几何条件,列方程就是根据这些条件确定的,由于轨迹问题比较普遍,题型多样,有些轨迹上的动点满足的几何条件可能比较隐蔽和复杂解决它需要突出形数结合的思考方法,运用逻辑推理,结合平面几何的基本知识,分析、归纳,这里安排本例就是针对以上情况来进行训练的 例2 一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s(1)爆炸点应在什么样的曲线上?(2)已知A、B两地相距800m,并且此时声速为340 ms,求曲线的方程分析:解应用题的关键是建立数学模型 根据本题设和结论,注意到在A处听到爆炸声的时间比B处晚2s,这里声速取同一个值 解:(1)由声速及A、B两处听到爆炸声的时间差,可知A、B两处与爆炸点的距离的差,因此爆炸点应位于以A、B为焦点的双曲线上因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上(2)如图,建立直角坐标系,使A、B两点在轴上,并且点O与线段AB的中点重合设爆炸点P的坐标为,则 |PA|PB|=3402=680,即 2680,340又|AB|=800, 2c=800,c=400,44400 |PA|PB|6800, 0所求双曲线的方程为 (0)例2说明,利用两个不同的观测点测得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程,但不能确定爆炸点的准确位置如果再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置这是双曲线的一个重要应用想一想,如果A、B两处同时听到爆炸声,那么爆炸点应在什么样的曲线上(爆炸点应在线段AB的中垂线上)点评:本例是培养学生应用双曲线知识解决实际问题的一道典型题目,安排在此非常有利于强化学生“应用数学”的意识,后面对“想一想”的教学处理,有利于调动学生的学习主动性和积极性,培养他们的发散思维能力例3求与圆及都外切的动圆圆心的轨迹方程解:设动圆的半径为r,则由动圆与定圆都外切得,又因为,由双曲线的定义可知,点M的轨迹是双曲线的一支所求动圆圆心的轨迹是双曲线的一支,其方程为: 例4 判断下列方程是否表示双曲线,若是,求出三量的值 ()分析:双曲线标准方程的格式:平方差,项的系数是正的,那么焦点在轴上,项的分母是;项的系数是正的,那么焦点在轴上,项的分母是解:是双曲线, ; 是双曲线, ;是双曲线, ; 是双曲线, 例5 已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于6,求双曲线标准方程 解:因为双曲线的焦点在轴上,所以设它的标准方程为 (,) 所求双曲线标准方程为 四、课堂练习:1判断方程所表示的曲线。解:当时,即当时,是椭圆;当时,即当时,是双曲线;2求焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2)的双曲线的标准方程。答案: 3求经过点和,焦点在y轴上的双曲线的标准方程答案:4椭圆和双曲线有相同的焦点,则实数的值是 ( ) A B C 5 D 9答案:B5已知是双曲线的焦点,PQ是过焦点的弦,且PQ的倾斜角为600,那么的值为(答案: 416)6设是双曲线的焦点,点P在双曲线上,且,则点P到轴的距离为( ) A 1 B C 2 D 答案:B 的面积为,从而有7P为双曲线上一点,若F是一个焦点,以PF为直径的圆与圆的位置关系是()A 内切 B 外切 C 外切或内切 D 无公共点或相交答案:C 五、小结 :本课着重讲解了待定系数法,代入法及利用定义求双曲线的标准方程,学习了双曲线的一个重要应用 六、训练:1求=4,=3,焦点在轴上的双曲线的标准方程 2求=2,经过点(2,-5),焦点在轴上的双曲线的标准方程 3证明:椭圆与双曲线的焦点相同 4若方程表示焦点在轴上的双曲线,则角所在象限是( )A、第一象限 B、第二象限 C、第三象限 D、第四象限 5设双曲线上的点P到点的距离为15,则P点到的距离是( )A7 B.23 C.5或23 D.7或23答案:1. ; 2. ; 3. , ;4. D.表示焦点在轴上的双曲线,所以选D. 5. D. 7或23五、小结 :双曲线的两类标准方程是焦点在轴上,焦点在轴上 有关系式成立,且 其中a与b的大小关系:可以为双曲线的简单几何性质 (二)目的:1使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质2掌握等轴双曲线,共轭双曲线等概念3并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题4通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 重点:双曲线的渐近线、离心率难点:渐近线几何意义的证明,离心率与双曲线形状的关系 一、复习引入: 1范围、对称性 由标准方程可得,当时,y才有实数值;对于y的任何值,x都有实数值 这说明从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2顶点顶点: 特殊点:实轴:长为2a, a叫做半实轴长 虚轴:长为2b,b叫做虚半轴长讲述:结合图形,讲解顶点和轴的概念,在双曲线方程中,令y=0得,故它与x轴有两个交点,且x轴为双曲线的对称轴,所以与其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段叫做双曲线的实轴长,它的长是2a.在方程中令x=0得,这个方程没有实数根,说明双曲线和Y轴没有交点。但Y轴上的两个特殊点,这两个点在双曲线中也有非常重要的作用 把线段叫做双曲线的虚轴,它的长是2b 要特别注意不要把虚轴与椭圆的短轴混淆 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异3渐近线过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形 矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线 分析:要证明直线()是双曲线的渐近线,即要证明随着X的增大,直线和曲线越来越靠拢 也即要证曲线上的点到直线的距离MQ越来越短,因此把问题转化为计算MQ 但因MQ不好直接求得,因此又把问题转化为求MN 最后强调,对圆锥曲线而言,渐近线是双曲线具有的性质 ()4等轴双曲线a=b即实轴和虚轴等长,这样的双曲线叫做等轴双曲线 结合图形说明:a=b时,双曲线方程变成(或,它的实轴和都等于2a(2b),这时直线围成正方形,渐近线方程为 它们互相垂直且平分双曲线的实轴和虚轴所成的角 5共渐近线的双曲线系如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成 6双曲线的草图利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线三、讲解范例:例1 求双曲线的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程,并作出草图分析:只要紧扣有关概念和方法,就易解答解:把方程化为标准方程由此可知,实半轴长a1,虚半轴长b2顶点坐标是(1,0),(1,0) 焦点的坐标是(,0),(,0)渐近线方程为,即 例2 求与双曲线共渐近线且过的双曲线的方程分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K的值即可解:设与共渐近线且过的双曲线的方程为则 ,从而有所求双曲线的方程为四、讲解新课:7离心率概念:双曲线的焦距与实轴长的比,叫做双曲线的离心率范围:双曲线形状与e的关系:,因此e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔 (1)双曲线的形状张口随着渐近线的位置变化而变化;(2)渐近线的位置(倾斜)情况又受到其斜率制约利用计算机动画先演示出“e的大小”与“开口的阔窄”的关系,能让学生对此变化规律先形成直观理解;然后再用代数方法边板书边推导,这样就可化难为易,使学生对此规律有更深刻清晰的理解 这样做将有助于实在本节的这个难点 8离心率相同的双曲线 (1)计算双曲线的离心率;(2)离心离为的双曲线一定是吗?举例说明 如果存在很多的话,它们能否用一个特有的形式表示呢? (3)离心率为的双曲线有多少条?分析:的关系式,并从中发现只要实现半轴和虚半轴各与a=2,b=3有相同的比k:1(k0)的双曲线,其离心率e都是9共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 如与注意的区别:三量a,b,c中a,b不同(互换)c相同通过分析曲线发现二者其具有相同的渐近线 此即为共轭之意1) 性质:共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上2) 确定双曲线的共轭双曲线的方法:将1变为-1 3) 共用同一对渐近线的双曲线的方程具有什么样的特征:可设为,当时交点在x轴,当时焦点在y轴上 五、范例:例1求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程解:把方程化为标准方程由此可知,实半轴长a4,虚半轴长b3焦点的坐标是(0,5),(0,5)离心率渐近线方程为,即 例2 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m,上口半径为13 m,下口半径为25 m,高55m选择适当的坐标系,求出此双曲线的方程(精确到1m) 分析:本题建立合适的坐标系是关键。注意到通风塔有三个特殊的截口圆:上口、下口、最小的一个截口。显然,最小截口圆的圆心是双曲线的中心,直径是双曲线的实轴,所以以最小截口直径所在直线为X轴,圆心为原点建立坐标系,则双曲线的方程具有最简单的形式。解:如图所示,建立直角坐标系xOy,使小圆的直径AA在x轴上,圆心与原点重合这时,上、下口的直径CC、BB平行于x轴,且|CC|=132(m),|BB|=252(m)设双曲线的方程为令点C的坐标为(13,y),则点B的坐标为(25,y55)因为点B、C在双曲线上,所以 且 解方程组,得 (负值舍去)代入方程,得化简得 19b2275b181500 解方程(使用计算器计算),得 b25(m)所以所求双曲线方程为 点评: 这是一个有实际意义的题目解这类题目时,首先要解决以下两个问题:(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来四、课堂练习:1.方程mx2ny2mn=0(mn0)所表示的曲线的焦点坐标是 B (A)(0,) (B)(0,) (C)(,0) (D)(,0)翰林汇2.下列各对曲线中,即有相同的离心率又有相同渐近线的是 D (A)-y2=1和-=1 (B)-y2=1和y2-=1(C)y2-=1和x2-=1 (D)-y2=1和-=1翰林汇3.与双曲线有共同的渐近线,且经过点A的双曲线的一个焦点到一条渐近线的距离是 (C )(A)8 (B)4 (C)2 (D)1翰林汇4.以为渐近线,一个焦点是F(0,2)的双曲线方程为 ( A )(A)(B) (C)(D)翰林汇5.双曲线kx2+4y2=4k的离心率小于2,则k的取值范围是 ( C )(A)(-,0) (B)(-3,0) (C)(-12,0) (D)(-12,1)翰林汇6.已知平面内有一固定线段AB,其长度为4,动点P满足|PA|-|PB|=3,则|PA|的最小值为 D (A)1.5 (B)3 (C)0.5 (D)3.5翰林汇7.已知双曲线b2x2a2y2 = a2b2的两渐近线的夹角为2,则离心率e为(C )(A)arcsin (B) (C) (D)tg28.一条直线与双曲线两支交点个数最多为 ( B )(A)1 (B)2 (C)3 (D)4翰林汇9.双曲线顶点为(2,1),(2,5),一渐近线方程为3x4yc = 0,则准线方程为 ( D )(A) (B) (C) (D) 10.与双曲线=1(mn0)共轭的双曲线方程是 ( D )(A) (B) (C) (D)翰林汇五、小结 :解例2这类应用题时,首先要解决以下两个问题:(1)选择适当的坐标系(通常是把题中的特殊直线或线段放在坐标轴上,特殊点放在原点);(2)将实际问题中的条件借助于坐标系用数学语言表达出来(如把实物上的特殊点、线用坐标描述出来) 练习:1下列方程中,以x2y=0为渐近线的双曲线方程是 答案:A 2.过点(3,0)的直线与双曲线4x2-9y2=36只有一个公共点,则直线共有 (A)1条 (B)2条 (C)3条 (D)4条答案:C 翰3.若方程=1表示双曲线,其中a为负常数,则k的取值范围是( )(A)(,-) (B)(,-) (C)(-,) (D)(-,)(-,+)翰林汇答案:B 4.中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程是(A) (B) (C) (D)答案:A 5.与双曲线有共同的渐近线,且一顶点为(0,9)的双曲线的方程是( ) (A) (B) (C) (D)答案:D 翰林汇6.一双曲线焦点的坐标、离心率分别为(5,0)、,则它的共轭双曲线的焦点坐标、离心率分别是 ( ) (A)(0,5), (B)(0, (C)(0, (D)(0,答案:A 7.双曲线2kx2-ky2=1的一焦点是F(0,4),则k等于 ( ) (A)-3/32 (B)3/32 (C)-3/16 (D)3/16答案:A 小结 :双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图的画法;双曲线的渐近线是,但反过来此渐近线对应的双曲线则是或写成 双曲线的简单几何性质 (三)目的: 1使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质2掌握双曲线的另一种定义及准线的概念3掌握等轴双曲线,共轭双曲线等概念4进一步对学生进行运动变化和对立统一的观点的教育重点:双曲线的渐近线、离心率、双曲线的另一种定义及其得出过程难点:渐近线几何意义的证明,离心率与双曲线形状的关系,双曲线的另一种定义的得出过程一、复习引入:1范围、对称性 由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2顶点顶点:特殊点:实轴:长为2a, a叫做半实轴长虚轴:长为2b,b叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异3渐近线过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形 矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线 4等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率 等轴双曲线可以设为:,当时交点在x轴,当时焦点在y轴上5共渐近线的双曲线系如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成 6双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线7离心率双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 8共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c中a,b不同(互换)c相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-1 共用同一对渐近线的双曲线的方程具有什么样的特征:可设为,当时交点在x轴,当时焦点在y轴上 二、讲解新课:9 双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率10准线方程:对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;位置关系: 焦点到准线的距离(也叫焦参数) 对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线11.双曲线的焦半径定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径焦半径公式的推导:利用双曲线的第二定义,设双曲线,是其左右焦点则由第二定义:, 同理 即有焦点在x轴上的双曲线的焦半径公式:同理有焦点在y轴上的双曲线的焦半径公式: ( 其中分别是双曲线的下上焦点)点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果要去绝对值,需要对点的位置进行讨论。两种形式的区别可以记为:左加右减,上减下加(带绝对值号)12焦点弦:定义:过焦点的直线割双曲线所成的相交弦焦点弦公式:可以通过两次焦半径公式得到:设两交点当双曲线焦点在x轴上时,焦点弦只和两焦点的横坐标有关:过左焦点与左支交于两点时: 过右焦点与右支交于两点时:当双曲线焦点在y轴上时,过左焦点与左支交于两点时:过右焦点与右支交于两点时:13通径:定义:过焦点且垂直于对称轴的相交弦直接应用焦点弦公式,得到 三、讲解范例例 点p(x,y)与定点F2(c,0)的距离与到的距离之比为常数,求P的轨迹方程解:设d是点P到直线的距离根据题意得化简,得 ()这是双曲线的标准方程 四、课堂练习:1双曲线16x29y2=144的实轴长、虚轴长、离心率分别为(C) (A)4, 3, (B)8, 6, (C)8, 6, (D)4, 3, 2顶点在x轴上,两顶点间的距离为8, e=的双曲线的标准方程为(A) (A) (B) (C) (D)3双曲线的两条准线间的距离等于(A) (A) (B) (C) (D)4若双曲线上一点P到双曲线上焦点的距离是8,那么点P到上准线的距离是(D) (A)10 (B) (C)2 (D)5经过点M(3, 1),且对称轴在坐标轴上的等轴双曲线的标准方程是(D) (A)y2x2=8 (B)x2y2=8 (C)x2y2=4 (D)x2y2=86以y=x为渐近线的双曲线的方程是(D) (A)3y22x2=6 (B)9y28x2=1 (C)3y22x2=1 (D)9y24x2=367等轴双曲线的离心率为 ;等轴双曲线的两条渐近线的夹角是 ()8从双曲线的一个焦点到一条渐近线的距离是 .(b)9与有公共焦点,且离心率e=的双曲线方程是 ()10以5x2+8y2=40的焦点为顶点,且以5x2+8y2=40的顶点为焦点的双曲线的方程是 . ()11已知双曲线上一点到其右焦点距离为8,求其到左准线的距离(答案:)五、小结 : 六、课后作业:1下列各对双曲线中,既有相同的离心率,又有相同的渐近线的是(B) (A)y2=1与y2=1 (B)y2=1与 (C)y2=1与x2 (D)y2=1与2若共轭双曲线的离心率分别为e1和e2,则必有(D) (A)e1= e2 (B)e1 e2=1 (C)=1 (D)=13若双曲线经过点(6, ),且渐近线方程是y=x,则这条双曲线的方程是(C) (A) (B) (C) (D)4双曲线的渐近线为y=x,则双曲线的离心率为(C) (A) (B)2 (C)或 (D)或5如果双曲线右支上一点P到它的右焦点的距离等于2,则P到左准线的距离为(C) (A) (B) (C)8 (D)106已知双曲线的一条准线是y=1,则实数k的值是(B) (A) (B) (C)1 (D)17双曲线的离心率e(1, 2),则k的取值范围是 .8若双曲线上的点M到左准线的距离为,则M到右焦点的距离是 .()9双曲线的离心率e=2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .()10在双曲线的一支上有不同的三点A(x1, y1), B(, 6), C(x3, y3)与焦点F间的距离成等差数列,则y1+y3等于 .(12)
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!