因数校正器开题报告.doc

上传人:wux****ua 文档编号:7990031 上传时间:2020-03-26 格式:DOC 页数:4 大小:40.50KB
返回 下载 相关 举报
因数校正器开题报告.doc_第1页
第1页 / 共4页
因数校正器开题报告.doc_第2页
第2页 / 共4页
因数校正器开题报告.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
单相PFC主电路拓扑开关电源功率因数校正技术作为电源的一门新兴技术,其作用和重要性已得到广泛的认同。由于单周期控制技术具有结构简单、控制精度高、响应速度快,控制性能不受电源参数变化影响等优点故得到广泛应用。单周期控制技术是一种大信号、非线性PWM控制技术,其基本控制思想是保证在每一个开关周期中开关变量与控制参考量相等或成比例。基于单周期控制技术的开关变换器能在每个开关周期抑制输入电压波动并且平均电流能快速跟踪控制参考量,且不受负载电流的约束,即使负载电流有很大的谐波也不会使输入电流发生畸变。非常适合用在功率因数校正(PFC)电路中。提高功率因数,实际上就是抑制在电网中的抑制谐波电流分量,谐波分量的产生的主要原因是开关电子器件在使用时,使电路中电流的波形发生改变,变成脉冲状,在电路中出现零功率时段,降低了电能的利用效率,也会使通讯设备产生误动作,故采用有源功率因数校正的方法,达到校正电流波形,减少谐波分量,提高功率的目的。因此,研究有源功率因数校正对于提高电能的利用效率方面有着深远的意义。三种单相PFC电路拓扑结构中,Boost升压型功率因数校正电路由于具有主电路结构简单,变换效率高,控制策略易实现等优点而得到广泛应用。高频化可以减小有源功率因数校正电路的体积、重量,提高电路的功率密度。为了使电路能够在高频下高效率地运行,有源功率因数校正电路的软开关技术成为重要的研究方向。 本文对单相Boost有源功率因数校正电路软开关技术进行了分类,并对每一类型的电路的拓扑结构、工作方式及工作特点做出了分析。 1 零电压开关(ZVS)PWM功率因数校正电路 ZVS工作方式是指利用谐振现象及有关器件的箝位作用,使开关变换器中开关管的电压在开启或关断过程中维持为零。 图1电路为ZVS功率因数校正电路,也称扩展周期准谐振功率因数校正电路1。在辅助开关S1开通时,电感Lr抑制二极管Df的反向恢复,电感Lr与电容Cf发生谐振至流过开关S1的电流降至输入电流大小。开关S2导通后,电感Lr与电容Cf再次谐振至流过开关S1的电流为0,电容Cf两端电压为Vo,使开关S1、开关S2实现ZV-ZCS关断。电路的不足之处是开关的电流应力比较大。 图1 扩展周期准谐振功率因数校正电路 2 零电压转换(ZVT)PWM功率因数校正电路 在ZVT工作方式中,谐振网络拓扑与主电路是并联的。零转换PWM功率因数校正电路的导通损耗和开关损耗很小,能实现零开关特性而不增大开关的电流或电压应力,适用于较高电压和大功率的变换器。 图2所示电路是传统的ZVT电路2。电感Lr与主开关S1寄生电容谐振使其寄生二极管导通,开关S1实现ZVS开通;同时,电感Lr抑制了二极管D1的反向恢复,二极管D2为电感Lr中的能量提供释放回路。 图2 ZVT-PWM功率因数校正电路之一及波形图 此电路的优点在于主开关ZVS开通,二极管D1的反向恢复得到抑制,电路结构简单;不足之处是辅助开关硬开通。 图3所示是对传统ZVT电路的改进电路3,其开关时序、主开关的电压、电流波形与图2相同。改进之处是在电感回路中串接二极管D3消除升压二极管D1寄生电容与电感Lr寄生振荡;在二极管D2两端并接电容减小了开关S2的关断损耗,可以提高电路的效率。 图3 ZVT-PWM功率因数校正电路之二及波形图电路的不足之处是改进后电路的辅助开关仍为硬开通。3 有源无损吸收电路 图20电路20抑制二极管反向恢复采用在电路中加入电感,再将电感中的能量释放的方式。如图20所示,主开关S1首先导通,电感Ls抑制了二极管D的反向恢复,电感Ls与开关S2寄生电容发生谐振使其放电至开关寄生二极管导通,开关S2实现ZVS开通。 图4 有源无损吸收电路 此电路的优点在于电路结构简单,能有效抑制二极管的反向恢复,辅助开关实现ZVS开通。 图5,谐振回路就不会包含输出端,不会引起输出端电压的波动。其不足之处仍在于两开关硬开关开通。 图5ZCS-PWM功率因数校正电路及波形图 图6电路6与以上电路的最大区别在于实现了一个开关的ZVS开通。如波形图所示,主开关S1开通,电感Ls抑制了二极管D的反向恢复,电感Ls与电容Cc谐振,开关S2反并二极管开通,为开关S2提供ZVS开通;电容Cc与电感Ls继续谐振,流过电容Cc的电流反向时,开关S1反并二极管开通,实现ZCS关断。 图6 ZCS-PWM功率因数校正电路之三及波形图 此电路的优点是主开关S1实现了ZCS关断,辅助开关S2实现了ZVS开通,因此,此电路又称为ZV-ZCS电路。电路的不足之处在于辅助开关S2的硬关断。 4 零电流转换(ZCT)PWM功率因数校正电路 图6电路为传统的零电流转换功率因数校正电路6。如图6所示,辅助开关S2开通时,电容Cr与电感Lr谐振,主开关S1反并二极管导通,实现ZCS关断;开关S1反并二极管关断后,开关S2关断,二极管D1开通,为电感Lr提供能量释放回路。 图6 ZCT-PWM功率因数校正电路之一及波形图 此电路的优点是实现了主开关S1的ZCS关断,电路结构简单。不足之处是,辅助开关硬开关开通关断,二极管的反向恢复没有得到抑制,主开关电流应力较大。 图7电路对传统的ZCT-PWM功率因数校正电路进行了改进7。如图7波形图所示,开关S2开通时,电容Cr、电感Lr谐振,流过二极管D1的电流逐渐减小到零,其反向恢复得到抑制;谐振电流换向后,开关S2反并二极管导通,实现ZCS关断;开关S2开通后,电容Cr与电感Lr谐振,开关S1反并二极管导通,实现ZCS关断。 图7ZCT-PWM功率因数校正电路之二及波形图 此电路的优点是实现了开关S1、S2的ZCS关断,二极管的反向恢复得到抑制;不足之处是辅助开关在一个开关周期有两次开关过程,电路工作方式中谐振较多,都会增大电路的损耗。综上所述,各种类型的软开关功率因数校正电路具有能够抑制二极管反向恢复,实现开关管的软开通或软关断,减少变换器的损耗,进而可以提高开关频率,减少磁性元件的体积和重量,提高变换器的功率密度。
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!