地球科学概论选修考试答案.doc

上传人:wux****ua 文档编号:7985384 上传时间:2020-03-26 格式:DOC 页数:12 大小:99KB
返回 下载 相关 举报
地球科学概论选修考试答案.doc_第1页
第1页 / 共12页
地球科学概论选修考试答案.doc_第2页
第2页 / 共12页
地球科学概论选修考试答案.doc_第3页
第3页 / 共12页
点击查看更多>>
资源描述
1.地磁场有哪些基本特征和起源假说?答:地磁场的基本特征:相当于地球球心磁偶所产生的磁场,有两个磁极,北磁极具有S磁性,南磁极具有N磁性,磁力线的分布:在北半球,磁力线由空中指向地下。在赤道附近磁力线平行地面,在南半球,磁力线由地下指向空中。磁轴与地轴之间的夹角为11.5。磁场极强的变化规律:平均值为0.5 两级最大值为0.6-0.7 赤道上最小值为0.3-0.4 起源假说:地球存在磁场的原因还不为人所知,普遍认为是由地核内液态铁的流动引起的。最具代表性的假说是“发电机理论”。1945年,物理学家埃尔萨塞根据磁流体发电机的原理,认为当液态的外地核在最初的微弱磁场中运动,像磁流体发电机一样产生电流,电流的磁场又使原来的弱磁场增强,这样外地核物质与磁场相互作用,使原来的弱磁场不断加强。由于摩擦生热的消耗,磁场增加到一定程度就稳定下来,形成了现在的地磁场。 再由物理知识可得,高温高压中的物质,其原子的核外电子全被加速而逃逸,所以在地核6000K的高温与360W个大气压的环境中会有大量的电子逃逸出来。地幔间会形成负电层,按照麦克斯的电磁理论,可以总结这样的一句话:电动生磁,磁动生电。所以要形成地球南北极式的磁场必然需要形成旋转电场(多说,由太阳提供初始力),而地球自转必然会造成地幔负电层旋转,即旋转的电场。还有一种假说认为地磁场起源 地球物理学的基本问题之一。自1600年英国的吉伯(W.Gilbert)提出“地球是一个巨大的磁石”开始,有关地磁场起源的推测已有近400年的历史,但至今仍未获得圆满解决。 简史 地磁场的主要部分犹如一个近似沿自转轴方向均匀磁化的球体的磁场。因此“永久磁石说”就成为地磁场成因最早和最自然的猜测。当地球物理学家提出地核可能是由铁、镍等强磁性物质组成的时候,这种猜测似乎得到了支持。然而地球内部的温度远超过铁的居里点(见岩石磁性),所以这个假说不能成立。继而有人曾企图借助于带电地球的旋转、回转磁效应、温差电流以及感应电流等物理效应来解释地磁场,但其量值都远远不够大。例如根据回转磁效应,地球由于自转获得的磁化强度约为10-10电磁单位,比与地磁场相当的均匀磁化球体的磁化强度7.210-2约小 9个数量级。鉴于从已有的物理规律找不到答案,有人开始探索新的规律。1947年英国物理学家布莱克特(P.M.S.Blackett)发现,当时测定的太阳、室女星座78号星和地球 3个天体的磁矩M和角动量P满足关系,其中G为万有引力常数,c为光速,为比例常数,约为0.25。布莱克特把这个关系设想为物理学的一个新定律,作为地磁场起源的解释,称为“巨大转体说”。由于有 3个天体的支持,这个假说曾一度引起广泛的关注。为证实这一结果,布莱克特专门设计了一种测弱磁场的高灵敏度仪器,但实验结果是否定的,所以布莱克特本人声明放弃他的假说。 自激发电机说与上述各种推测同时出现的是“自激发电机说”。1919年拉莫尔(J.Larmor)首先提出了旋转的导电流体维持自激发电机的可能性,这是关于地磁场起源的自激发电机说的最早概念。而较为系统的论述,则是40年代末和50年代初由埃尔萨塞 (W.M.Elsasser)、帕克(E.N.Parker)和布拉德(E.C.Bullard)等人完成的,称为埃尔萨塞帕克模型和布拉德过程。随着大型计算机的应用,使更复杂的磁流体动力学的计算成为现实。60年代后期发现,布拉德过程是不稳定的。这使得曾被认为极有希望的“自激发电机说”陷入了危机。直到1970 年,利利(F.E.M.Lilley)修正了布拉德过程的运动模式,才使得稳定的“自激发电机说”再度有了可能。60年代古地磁学的数据肯定了地磁场在漫长的地质时期经历了多次倒转的事实,地磁场极性的正向与反向的历史并没有显示出哪种极性更具有特殊性。这是除“自激发电机说”以外,其他关于地磁成因的假说所难以解释的。地球具有磁场在天体中并不特殊,太阳系九大行星中至少有木星、水星具有与地球磁场相类似的内源磁场。太阳和许多恒星也具有磁场。6070年代帕克的研究说明,地磁场起源的模式可能对其他天体也适用。据此,人们现在认为“自激发电机说”是解释地磁成因的最有希望的理论。 原理 地核内磁流体动力学的研究思路是导电流体和磁场的相互作用如何改变原始的磁场和运动状态,这是“自激发电机说”的基础。2、板块运动与地质构造、火山活动、地震活动的关系?大陆飘移是由板块运动引起的,板块构造学说认为地球表层的岩石圈并不是整体一块的,而是由多个板块拼和而成的。全球有6大板块,它们处于不同的运动状态中,使海洋与陆地的相对位置不断变化。 一般来说,板块的内部比较稳定,而板块边缘地壳运动比较活跃,通常表现为张裂拉伸、俯冲碰撞、断裂错动等,容易形成火山和地震。全球有两大火山地震带,即环太平洋火山地震带和地中海-喜马拉雅火山地震带,地区眼上百分之九十五的大地震都发生在这两带内。简单地说,地震的原因主要有:地球各个大板块之间互相挤压.另外还有火山喷发引起. 地震分为天然地震和人工地震两大类。天然地震主要是构造地震,它是由于地下深处岩石破裂、错动把长期积累起来的能量急剧释放出来,以地震波的形式向四面八方传播出去,到地面引起的房摇地动。构造地震约占地震总数的90%以上。其次是由火山喷发引起的地震,称为火山地震,约占地震总数的7%。此外,某些特殊情况下了也会产生地震,如岩洞崩塌(陷落地震)、大陨石冲击地面(陨石冲击地震)等。 引起地震的原因很多,据此可分为构造地震、火山地震和冲击地震,人类活动也可以导致发生地震,称为诱发地震,如水库地震。 一、构造地震 构造地震是由构造变动特别是断裂活动所产生的地震。全球绝大多数地震是构造地震,约占地震总数的90。其中大多数又属于浅源地震,影响范围广,对地面及建筑物的破坏非常强烈,常引起生命财产的重大损失。 我国的强震绝大部分是浅源构造地震,其中80以上均与断裂活动有关。如1970年1月5日云南通海地震(7.7级),是曲江断裂重新活动造成的。1973年2月四川甘孜、炉霍地震(7.9级),是鲜水河断裂重新活动造成的,并在地震后在地面形成一条走向NW310、长100多km的地裂缝。 世界上许多著名的大地震也都属于构造地震。1906年美国旧金山大地震(8.3级)与圣安德列斯大断裂活动有关。1923年日本关东大地震(8.3级)与穿过相模湾的NW-SE向的断裂活动有关。1960年5月21日至6月22日在智利发生一系列强震(3次8级以上的地震,10余次7级以上的地震),都发生在南北长达1400km的秘鲁海沟断裂带上。 (一)构造地震的成因和震源机制 这个问题是地震预报理论中最核心的问题,也是目前仍在继续探讨和需要解决的问题。 在地壳及上地幔中,由于物质不断运动,经常产生一种互相挤压和推动岩石的巨大力量,即地应力。岩石在地应力作用下,积累了大量的应变能;当这种能一旦超过岩石所能承受的极限数值时,就会使岩石在一刹那间发生突然断裂,释放出大量能量,其中一部分以弹性波(地震波)的形式传播出来,当地震波传到地面时,地面就震动起来,这就是地震。 从已发生的地震来看,它的发生跟已经存在的活动构造(特别是活断层)有密切关系,许多强震的震中都分布在活动断裂带上。如果从全球范围来看,地震带的分布与板块边界密切相关。这些边界实际上也是张性的、挤压性的或水平错开的一些断裂构造。 断裂活动何以产生能量很大的地震,其活动方式如何,目前存在若干有关的假说。 1.弹性回跳说 是出现最早、应用最广的关于地震成因的假说,是根据1906年美国旧金山大地震时发现圣安德列斯断层产生水平移动而提出的一种假说。假说认为地震的发生,是由于地壳中岩石发生了断裂错动,而岩石本身具有弹性,在断裂发生时已经发生弹性变形的岩石,在力消失之后便向相反的方向整体回跳,恢复到未变形前的状态。这种弹跳可以产生惊人的速度和力量,把长期积蓄的能量于霎那间释放出来,造成地震。总之,地震波是由于断层面两侧岩石发生整体的弹性回跳而产生的,来源于断层面。如图8-3,岩层受力发生弹性变形(B),力量超过岩石弹性强度,发生断裂(C),接着断层两盘岩石整体弹跳回去,恢复到原来的状态,于是地震就发生了。这一假说能够较好地解释浅源地震的成因,但对于中、深源地震则不好解释。因为在地下相当深的地方,岩石已具有塑性,不可能发生弹性回跳的现象。 2.蠕动说 蠕动又称潜移、潜动。地表土石层在重力作用下可以长期缓慢地向下移动,其移动体和基座之间没有明显的界面,并且形变量和移动量均属过渡关系,这种变形和移动称为蠕动。蠕动速率每年不过数毫米至数厘米。 人们发现建筑在活动断层上的建筑物和活动断层本身在没有地震的情况下也有这种蠕动现象,即相对缓慢稳定的滑动。如在土耳其安卡拉以北110km处有一条安纳托里亚活动断层带,位于此断层带上的建筑物墙壁被发现有错断现象,其蠕动量每年约为2cm。也有人对中东一带发生地震以后的断层进行观测,发现有些地段伴有无震蠕动,其蠕动量每年约为1cm。 在什么情况下容易产生蠕动,还未十分清楚。有些实验表明,在高压低温,岩石孔隙度高(含水),含有软弱性矿物如白云石、方解石、蛇纹石等岩石的条件下,容易产生稳定蠕动。也有人认为在更高的围压或更高的温度下容易产生蠕动。 有一种现象逐渐为事实所证明,即岩层中长期蠕动的地段或在活动断层中蠕动占长期活动的百分比较高的地段,由于能量通过缓慢的蠕动而逐渐释放,反而很少发生强烈地震。在我国阿尔金山地区有规模很大的剪切断层,是正在活动的断层,通过卫星影像分析,发现有蠕动现象,现代水系被切穿,位移明显,错距也很大,但是有史以来却少有地震记录,推测此断层的活动方式是以无震蠕动为主。 根据蠕动与地震大小关系的资料表明:蠕动占长期活动的50以上的地段,最大地震只能为5级,而蠕动占长期活动的10以下的地段,可能发生8级以上的大地震。 3.粘滑说 在地下较深的部位,断层两侧的岩石若要滑动必须克服强大的摩擦力,因此在通常情况下两盘岩石好像互相粘在一起,谁也动弹不了。但当应力积累到等于或大于摩擦力时,两盘岩石便发生突然滑动。通过突然滑动,能量释放出来,两盘又粘结不动,直到能量再积累到一定程度导致下一次突然滑动。实验证明,物体在高压下的破坏形式,是沿着断裂面粘结和滑动交替进行,断面发生断续的急跳滑动现象,经过多次应力降落,把积累的应变能释放出来,这种说法就叫粘滑说。 影响断层活动方式的因素很多:一是温度,温度低于500,断层面两侧岩体易产生粘滑;温度高于500,则易产生蠕动和蠕变。二是岩石成分,岩性脆硬(如石英岩、石英砂岩等),断层两侧岩石往往以粘滑为主;岩性柔软,则以蠕动为主。三是岩石的孔隙度和水分含量,岩石孔隙大,孔隙度高,含水分多,当然容易蠕动;相反,岩石孔隙小,孔隙度低,含水分少,则多呈粘滑形式。此外,围压的大小也会影响断层的活动方式。如果断层两盘连续发生粘滑,便是地震频繁的时期。 实际上,同一活动断层在不同的深度可以有不同的活动方式,同一断层在不同的时期也可以有不同的活动方式。例如,圣安德列斯断层,深度在4km以上为无震的稳定蠕动;412km则为伴随有地震的粘滑运动;12km以下(由于高温)又以稳定的蠕动为主。因此,圣安德列斯断层带上的地震震源深度均不超过20km。 4.相变说 有人认为深源地震是由于深部物质的相变过程引起的。地下物质在高温高压条件下,引起岩石的矿物晶体结构发生突然改变,导致岩石体积骤然收缩或膨胀,形成一个爆发式振动源,于是发生地震。此说未能从多方面给出具体论证,因而未能得到广泛流行。近年根据地震纵波在地下深部传播情况分析,深源地震所在部位也同样发生了断裂和错动,证明地震发生与断裂活动有关。同时,板块构造学说指出,当岩石圈板块向地下俯冲时,中、深源地震发生在向地幔消减的板块内部,而并非发生在地幔软流圈物质中,因此相变说自然失去了存在的依据。 (二)构造地震的特征 构造地震的特点是活动频繁,延续时间长,波及范围广,破坏性强。 1.地震序列 任何一次地震的发生都经过长期的孕育过程即应力积累过程,这一过程可以长达十几年、几十年甚至几百年。 但在一定时间内(几天,几周,几年),在同一地质构造带上或同一震源体内,却可发生一系列大大小小具有成因联系的地震,这样的一系列地震叫做地震序列。在一个地震序列中,如果有一次地震特别大,称为主震;在主震之前往往发生一系列微弱或较小的地震,称为前震;在主震之后也常常发生一系列小于主震的地震,称为余震。 构造地震的重要特征之一,就是常呈这种有序列的发生。这种特征可能和构造地震产生的过程有关。一般说来,当地应力即将加强到超过岩石所承受的强度时,岩层首先产生一系列较小的错动(或者沿着断层带粘滑开始交替过程),从而形成许多小震,即前震。接着地应力继续增大,到了岩层承受不了的时候,就会引起岩层的整体滑动或新断裂滑动,形成大震,即主震。主震发生后,岩层之间的平衡状态还需要经过一段时间的活动和调整,把岩层中剩余能量释放出来,从而引起一些小的余震。在地震现场,常可见到在破裂的地面上,又出现许多次一级裂隙,错杂其间,表明运动没有完全停止,直到使许多尚未破坏的地点彻底破坏,所剩余的应变能全部得到释放。这种情况类似压紧弹簧过程,当作用力消失后,所蓄位能即转化为动能反跳回来,恢复原来状态,但又难于一下复原,还需经过一段时间的慢慢颤动调整,才能恢复原来的平衡位置。这种现象称为弹簧效应。岩石也是具有弹性的,所以也应有这种弹性效应。1920年宁夏(原甘肃)海原大地震,余震三年未消。其强度与频度时高时低,但总的趋势是逐渐衰减直到平静下来。 2.地震序列类型 虽说构造地震常呈一定序列,但其能量释放规律、大小地震的活动时间和比例等又常各不相同。根据1949年10月以来的我国所发生强震的分析研究,地震序列可以归纳为3种类型: (1)单发型地震 又称孤立型地震。这种地震的前震和余震都很少而且微弱,并与主震震级相差悬殊,整个序列的地震能量几乎全部通过主震释放出来。此类地震较少,1966年秋安徽定远地震、1967年3月山东临沂地震,均未观测到前震和余震,震级很小,只有44.5级。 (2)主震型地震 是一种最常见的类型,主震震级特别突出,释放出的能量约占全系列的90以上;前震或有或无,但有很多余震。1975年2月4日辽宁海城地震(7.3级),发震前24小时内共发生了500多次前震,主震后又发生很多次余震。1976年7月28日唐山大地震(7.8级),则基本没有前震,但余震连续数年不断。 (3)震群型地震 由许多次震级相似的地震组成地震序列,没有突出的主震。此类地震的前震和余震多而且较大,常成群出现,活动时间持续较长,衰减速度较慢,活动范围较大。如1966年邢台地震,从2月28日至3月22日,震级由3.6、4.6、5.3、6.8、6.8逐步升到7.2,发生大震。有时这种类型的地震是由两个主震型地震组合或混淆在一起形成的。 有时地震序列比较复杂,仿佛是由若干单发型、主震型、震群型组合而成。如1971年89月四川省马边地震。 地震序列类型可能与岩石和构造的均匀程度及复杂性有关。据实验,当介质均匀,且介质内应力不集中时,主破裂前无小破裂,主破裂后也很少小破裂;当介质不均一且应力有一定的局部集中或高度集中时,主破裂前后都会产生一定的或很多的小破裂。 研究地震序列类型,可以有助于预测和预报地震活动的趋势。如1967年河间地震,当主震发生后,根据其前震少和震级小(2.3级),被判断为主震型地震,主震后不会有较大的余震。事实表明推断正确。 二、火山地震 指火山活动引起的地震。这种地震可以是直接由火山爆发引起地震;也可能是因火山活动引起构造变动,从而发生地震;或者是因构造变动引起火山喷发,从而导致地震。因此,火山地震与构造地震常有密切关系。 火山地震为数不多,约占总数的7。震源深度不大,一般不超过10km。有些地震发生在火山附近,震源深度为110km,其发生与火山喷发活动没有直接的或明确的关系,但与地下岩浆或气体状态变化所产生的地应力分布的变化有关,这种地震称为A型火山地震。还有些地震集中发生在活火山口附近的狭小范围内,震源深度浅于1km,影响范围很小,称为B型火山地震。有时地下岩浆冲至接近地面,但未喷出地表,也可以产生地震,称为潜火山地震。 现代火山带如意大利、日本、菲律宾、印度尼西亚、堪察加半岛等最容易发生火山地震。 三、冲击地震 这种地震,因山崩、滑坡等原因引起,或因碳酸盐岩地区岩层受地下水长期溶蚀形成许多地下溶洞,洞顶塌落引起。后者又称塌陷地震。本类地震为数很少,约占地震总数的3。震源很浅,影响范围小,震级也不大。1935年广西百寿县曾发生塌陷地震,崩塌面积约4万m2,地面崩落成深潭,声闻数十里,附近屋瓦震动。又如,1972年3月在山西大同西部煤矿采空区,大面积顶板塌落引起了地震,其最大震级为3.4级,震中区建筑物有轻微破坏。 四、水库地震 有些地方原来没有或很少发生地震,后来由于修了水库,经常发生地震,称为水库地震。说明这种地震与水的作用有关,当然也与一定的构造和地层条件有关,而水的作用只是一种诱发因素。如广东河源新丰江水库,自1959年蓄水后,在库区周围地震频度逐渐增加,于1962年3月19日发生了一次6.4级地震,震中烈度达到8度,是已知最大水库地震之一。截至1972年,该区共记录了近26万次地震(图84)。又如,著名的埃及阿斯旺水库,坝高110m,库容达165亿m3,1960年正式开工,1964年截流蓄水,1968年正式投入运行。此地区在建库前历史上无地震,从1980年起出现小震、微震,于1981年11月在坝址西南60km库区发生了5.6级地震;于1982年同一地点又发生了5级和4.6级地震。 此外,因深井注水、地下抽水等也可触发地震。如美国科罗拉多州有一座落基山军工厂,为处理废水凿了一口3614m的深井,用高压注水于地下,于1962年发生频繁的地震。以后停止注水,地震活动减弱;恢复注水,地震又有所增加。 上述地震,特别是水库地震的成因引起人们极大关注。一般认为,在一定的有利于发震的地质构造条件(如有活动断层、密集或交叉的断裂存在,或在升降差异运动的过渡部位等)下,水库蓄水可诱发地震。除去人为因素诱发地震外,某些自然因素如太阳黑子活动期,阴历的朔、望期等,也容易诱发地震。各种触发机理正有待于人们深入研究。 火山和地震产生原因 地球表面有一层很厚很厚的地壳,平常岩浆被地壳紧紧地包在里边。地球内部的温度特别高,岩浆在那里边流来流去,总想找个地方窜到外面来。有些地方地壳运动比较强烈,地壳又比较薄弱,这些地方受到压力的时候,岩浆就从这里冲出来了。这样,就发生了火山爆发。活火山、死火山这是指火山活动的情况。有些火山爆发了一次后一直不爆发,这些火山就成了死活山。 人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。 地震波发源的地方,叫作震源。震源在地面上的垂直投影,叫作震中。震中到震源的深度叫作震源深度。通常将震源深度小于70公里的叫浅源地震,深度在70-300公里的叫中源地震,深度大于300公里的叫深源地震。破坏性地震一般是浅源地震。如1976年的唐山地震的震源深度为12公里。 地幔物质的热对流。是由地球内部放射性元素衰变产生的能量所驱动的。是地球内部能量释放的外部表现。内部能量释放主要有一下形式:地震,火山,板块运动,地质构造。地震是其中之一。 1在地球内部有震源,震源向外释放能量(地震波)从而引起一定范围内的振动 2其它地质灾害或自然灾害,也可以间接诱发地震 地幔物质的热对流。是由地球内部放射性元素衰变产生的能量所驱动的。是地球内部能量释放的外部表现。内部能量释放主要有一下形式:地震,火山,板块运动,地质构造。地震是其中之一。 而降水,风,洋流,河流等地表过程都是由地球外部能量即太阳所驱动。 地震发生的原因为何? 地震可分为自然地震与人工地震 (例如:核爆) 。一般所称之地震为自然地震,依其发生之原因又可分为, (1)构造性地震(2)火山地震(3)冲击性地震 (例如,陨石撞击) 。其中又以板块运动所造成的地壳变动 (构造性地震) 为主 。 由于地球内有一种推动岩层的应力,当应力大于岩层所能承受的强度时,岩层会发生错动 (dislocation),而这种错动会突然释放巨大的能量,并产生一种弹性波 (elastic waves) ,我们称之为地震波 ( seismic waves) ,当它到达地表时,引起大地的震荡,这就是地震。3、地球三大地质作用(包括岩浆作用机理、变质作用类型、沉积作用环境,成岩类型及其相互关系)。板块理论。六十年代中期兴起一种新的大地构造理论板块结构理论。它认为岩石圈的构造单元是板块。全球可被划分为六大板块:欧亚板块、太平洋板块、美洲板块、非洲板块、印度洋板块和南极板块。火山学家根据这一理论认为,当组成地球最外层的巨形岩石板块之间发生碰撞及挤磨时,俯冲带的温度大幅度上升,甚至达到使地壳下面的岩石发生部分熔融的程度,从而导致火山的形成。由于世界上绝大部分火山都分布在各个板块的边缘地带,看来这种解释是合理的。 热点理论。夏威夷群岛火山是人们研究较多的火山。但夏威夷群岛离最近的板块边缘有3200公里。显然用板块理论释解释是行不通的。热点理论认为,夏威夷群岛是由地球内部一个神秘的“热点”形成的。当太平洋板块在这个热点上移动时,板块底层岩石就被熔化,借助地下的压力侵入到地壳上部形成岩浆库,最后变成火山。这一理论成功地解释了夏威夷群岛形成的过程,受到人们的重视。但对于热点是产生于地核深处还是局限于该地区地壳底部尚有争论。 岩浆的演化机制岩浆从源区分离之后,温度、压力等条件发生了改变,随即开始了岩浆演化历程,从原生岩浆演化出派生岩浆,生成了多种岩石。在岩浆转变为岩石的过程中都发生了什么作用呢?主要有:分异作用、岩浆混合作用、同化混染作用.1、分异作用 原来成分均匀的岩浆,在没有外来物质加入的情况下,依靠岩浆自身的演化,最终形成不同组成的火成岩。主要包括:熔离作用、扩散-对流作用、分离结晶作用1)熔离作用 是指原来混溶的熔体因物理(如温度、压力的变化)或化学(如第三种组分的加入)的原因分离为不混溶或混溶程度低的两种熔体的过程。2)扩散对流作用 原来均一的岩浆,由于液态的岩浆体内部及其与相接触的围岩间存在温度梯度,导致产生成分梯度的作用。此时,热量和物质通过液液界面进行扩散对流,使高熔点的组分向着低温的熔体边部迁移,冷凝较早,形成较基性富含高熔点组分的的边缘带;而低熔点的组分则向高温的熔体内部迁移,冷凝较晚,生成了较酸性富含低熔点组分的内部带。岩浆中物质扩散的驱动力:温度梯度、浓度梯度或化学位梯度3)分离结晶作用(结晶分异作用) 概念:是指由于岩浆中结晶的固相物质的分离,使残余岩浆成分发生变化的作用。 类型: A. 流动分异作用 B. 重力分离结晶作用A. 流动分异作用特点:主要发生在流速变化较大的岩浆通道内,如岩墙和岩脉中原因:岩浆与上侵通道侧壁围岩间的粘滞摩擦作用使流速从通道中心向边缘降低,导致矿物晶体向流速高的中心带集中,使结晶的矿物与熔体分离。规模:影响有限,大岩体仅限于岩体与围岩的接触带B. 重力分离结晶作用 早结晶的矿物因其与岩浆之间的密度差下沉到岩浆房的底部,或上浮到岩浆房顶部。影响晶体能否从岩浆中沉降分离的因素: 晶体与岩浆的密度差、晶体直径(B)、岩浆的粘度矿物分离结晶的顺序鲍文(Bowen,1928)反应系列鲍文反应系列的岩石学意义1)解释岩浆中矿物结晶顺序2)解释岩浆中矿物共生规律,两个系列结晶温度相当的矿物可以共生3)解释暗色矿物间的反应边结构和斜长石正环带结构4)玄武质岩浆经分离结晶作用可逐步形成酸性岩浆2、岩浆混合作用( Magma Mixing )由两种或两种以上的不同成分的岩浆以不同的比例混合,形成一系列过渡类型岩浆的作用。识别标志:1)混合不彻底时,基性端元和酸性端元及二者间的过渡岩石同时出现;在岩体中可见到一些基性端元的岩石团块、微粒包体等2) 矿物间出现明显的不平衡现象:两种成分差别较大的斜长石的共存等3)混合彻底:对于一套岩石来说,端元组分与混合组分在 Harker-type 变异图上应该呈一条直线3、同化混染作用(assimilation)(1)概念:岩浆熔化或溶解围岩或捕虏的围岩碎块,将改变岩浆的成分,当熔化或溶解较彻底时,称同化作用;不彻底时可有未熔物质的残留,称为混染作用。(2)同化混染的可能方式:1)岩浆熔化比自己熔点低的围岩物质,使熔体的总成分发生改变。2)岩浆不能熔化比自己熔点更高的围岩,只能通过离子交换反应,改变围岩及捕虏体成分,使之达到平衡。3)与岩浆相适应的围岩物质可在岩浆中保持稳定,如玄武岩中的地幔橄榄岩包体。(3)同化混染作用的鉴别标志:1)主要出现在大型侵入体的边缘带,与围岩之间常形成渐变过渡带;2)在同化混染带,常含有围岩的捕虏体或捕虏晶,出现不平衡矿物和不平衡结构,如花岗岩中出现硅辉石;3)岩石的结构、构造不均一,出现斑杂构造 变质作用类型的划分对变质作用的类型进一步划分,自变质岩作为一门独立学科的出现就提出许多分类,下面简要介绍常见的变质作用类型: 区域变质作用(regional metamorphism):最先是由法国学者A.Daubree于1859年提出,是指大面积的岩石,因为温度增高和压力的作用等多种因素下,发生了程度不等的重结晶和变形的一类变质作用。区域变质作用形成的岩石普遍具有结晶片理及其他方向性组构。接触变质作用(contact metamorphism):是指在岩浆作用影响下,围岩主要受岩浆体温度的影响而产生的一种局部性变质作用。通常规模不大,围岩主要受岩浆散发的热量及挥发份的作用。当围岩仅受岩浆体温度影响而发生重结晶作用、变质结晶作用,变质前后化学成分基本相同,这类变质作用称为热接触变质作用。当围岩除受岩浆体温度影响外,由于挥发组分的影响,岩体和围岩发生交代作用,致使接触带附近的岩体和围岩的化学成分也发生变化,称为接触交代变质作用。动力变质作用(dynamo metamorphism):是一种由于构造作用过程中所产生的强应力作用下,岩石发生破碎、变形,在破碎、变形的同时,伴有一定重结晶作用。其发育常受断裂构造控制,原岩的变化主要以脆性变形和塑性变形为主。气液变质作用(Pneumatolytic hydrothermal metamorphism):是由于热的气体及溶液作用于已形成的岩石,使已有的岩石产生矿物成分、化学成分及结构构造的变化,称为气液变质作用。气液变质作用通常沿构造破碎带及矿脉边缘发育。(一)岩浆分异作用 岩浆可以通过两种方式发生分异,即熔离作用和结晶分异作用,这是岩浆内部发生的一种演化。 1.熔离作用 原来均一的岩浆,随着温度和压力的降低或者由于外来组分的加入,使其分为互不混溶的两种岩浆,即称为岩浆的熔离作用。日常生活中的油水关系可以做为这方面的例子。在炼铁炉中熔炼铁矿石时,在CaCO3和CaF2等外加熔剂作用下,铁水和熔渣(硅酸盐熔体)就分为互不混溶的两个液层,铁水比重大而下沉,熔渣轻而上浮,这是同天然熔离作用很相似的又一例子。此外,也有人把玄武岩熔化后做试验,在玄武岩熔体加入CaF2,结果熔体也分为两个液层,上部为相当于流纹岩岩浆的酸性熔体层,下部为相当于橄榄岩的超基性熔体层。 目前认为,在天然的岩浆中硫化物、氧化物和硅酸盐熔体可以发生熔离作用;一些含有铜镍的基性岩浆在高温时铜镍硫化物熔体完全混溶于基性岩浆中,当温度下降到某一限度后,此二种熔体即发生分离,铜镍硫化物比重大而富集于底部成矿床,硅酸盐熔体在上部固结成岩石。我国西南某地的含铂硫化物矿床就是这样形成。至于岩浆中不同的硅酸盐熔体之间能否发生熔离作用,尚有争议。不过一些人仍认为辉长岩中的条带状构造和某些珍珠岩中的球粒是硅酸盐熔离作用造成的。甚至近来有人提出在上地幔的岩浆源区就能够发生深部熔离作用从而产生安山岩浆和玄武岩浆的论点,尚待研究。 2.结晶分异作用 矿物的结晶温度有高有低,因此,矿物从岩浆中结晶析出的次序也有先有后。在岩浆冷凝过程中矿物按其结晶温度的高低先后同岩浆发生分离的现象叫结晶分异作用。结晶分异作用在玄武岩浆中研究得最为完备,由鲍文和贝莱(Baliey)于本世纪20年代即完成了实验和地质方面的经典研究,成为岩浆岩的理论支柱之一。 玄武岩浆的结晶分异作用模式一般称为鲍文反应原理,即随着岩浆温度的降低,橄榄石首先结晶,并由于它比重大而沉落于岩浆体底部形成橄榄岩;继而辉石基性斜长石同时结晶并沉落于橄榄岩“层”之上形成辉长岩;角闪石中性斜长石同时析出构成闪长岩;而岩浆中越来越富SiO2、K2O、Na2O及挥发性组分,并慢慢地被已晶出的矿物“层”挤到岩浆体的顶部最后结晶出石英钾长石酸性斜长石组合,即花岗岩。因为在这一分异过程中在矿物晶出后因其比重不同受重力作用而分别沉落、堆积,故又称“重力结晶分异作用”。用这种理论能够较圆满地解释层状超基性基性侵入岩杂岩体,并建立堆积岩理论。在有关层状侵入体的矿床研究中,这种理论也得到了验证,并起到了指导找矿的作用。所以,这种结晶分异观点,经过半个多世纪的实验研究、理论探索和地质观察,对于层状超基性基性岩的成因解释基本上得到了承认。但用玄武岩浆的分异作用解释多数或全部岩浆岩的成因,尚有值得进一步研究的地方。 (二)同化混染作用 由于岩浆温度很高,并且有很强的化学活动能力,因此它可以熔化或溶解与之相接触的围岩或所捕虏的围岩块,从而改变原来岩浆的成分。若岩浆把围岩彻底熔化或溶解,使之同岩浆完全均一,则称同化作用;若熔化或溶解不彻底,不同程度的保留有围岩的痕迹(如斑杂构造等),则称混染作用。因同化和混染往往并存,故又统称同化混染作用。此外,也有人把岩浆熔化或溶解围岩并使之逐渐消失于岩浆中的过程叫同化作用;把因围岩的熔化或溶解使岩浆成分受到外来物质(围岩)的污染(混染)而改变其原来成分的作用叫混染作用。显然,同化与混染为同一过程,是岩浆与围岩的相互作用,岩浆同化围岩,围岩则污染岩浆,因此,也一并称为同化混染作用。 一般同化混染作用中岩浆成分变化的规律是基性岩浆同化酸性(或富含SiO2)的围岩时,岩浆向酸性变化(酸度增加);反之,酸性岩浆同化基性(富含Ca、Fe、Mg)围岩时,岩浆向基性方向变化(酸度降低)。按照鲍文反应原理,基性岩浆可以同化酸性围岩,但酸性岩浆难于同化基性围岩。不过由于酸性岩浆往往富含挥发组份(CO2、H2O、F、Cl等),因而有很强的溶解能力,虽然其温度低些,但它也能发生强烈的同化作用。其中酸性岩浆同化碳酸盐岩石(石灰岩、白云岩)的作用具有重大意义,因为它不仅能形成许多小的中性岩侵入体,而且也往往伴有矽卡岩化形成所谓矽卡岩矿床,如铜、铁、钨矿等。在该同化作用中,大量Ca和Mg加入岩浆,使岩浆酸度降低,形成闪长岩或石英闪长岩,而在接触带上形成含石榴石和辉石的矽卡岩(变质岩)。如长江中下游的许多中酸性侵入岩体广泛发育此种同化作用。4、何谓重力均衡?地学家是怎样解释重力均衡现象的? 地表地形的起伏造成的载荷差异将在地壳深部乃至更深的部位得到充分补偿。在某一补偿深度之下,地球的压力 处于流体静平衡状态,因此,在补偿界面以上的单位截面柱体中的重量必须相等,过多的地表负荷会导致在补偿界面之上要有等量的质量亏缺才能达到静态平衡,反之亦然。一般我们利用地壳的均衡异常来研究地壳的均衡状态。由于补偿质量对地面观测点重力的影响的校正均称为均衡校正,几位校正值gc,均衡重力异常可以在布格重力异常gb的基础上再做均衡校正来得到,即: gi=gb-gc 均衡重力异常能叫正确的反映出地壳结构的部分真实情况,若没有其它因素干扰,当地壳完全处于均衡状态时,区域性平均均衡重力异常应该接近于零,反之,则存在较大的或正或负的均衡异常,这些异常都表明地壳处于均衡失调状态,存在与之相应的均衡调整作用。均衡原理已被越来越多的地球物理资料(如重力资料、地震资料等)所证实,愈来愈受到人们的重视。5、气团与锋面的概念,气团过境与锋面过境的天气特征?气团是指气象要素(主要指温度和湿度)水平分布比较均匀的大范围的空气团。在同一气团中,各地气象要素的重点分布几乎相同,天气现象也大致一样。气团的水平范围可达几千公里,垂直高度可达几公里到十几公里,常常从地面伸展到对流层顶。气团的分类方法主要有三种,一种是按气团的热力性质不同,划分为冷气团和暖气团;第二种是按气团的湿度特征的差异,划分为干气团和湿气团,第三种是按气团的发源地,常分为北冰洋、气团、极地气团,热带气团、赤道气团。1)冷气团(ColdAirMass):气团温度低于流经地区下垫面温度的,或两个气团相遇时温度较低者,叫冷气团。当冷气团向南移行至另一地区时,不仅会使这个地区变冷,且由于气团底部增暖,气温直减率增大,气层往往趋于不稳定,有利于对流的发展,产生不稳定天气,低层的能见度一般较好。夏季,若冷气团中水汽含量多,常形成积云和积雨云,产生雷阵雨天气。冬、春两季,由于冷气团中湿度较小,常是干冷天气。冷气团内气温、风等气象要素有明显的日变化;夜间低层辐射冷却,在大陆上可形成辐射雾。? 2)暖气团(WarmAirMass):气团温度高于流经地区下垫面温度的,或两个气团相遇时温度较高者,叫暖气团。当暖气团向北移行至另一地区时,不仅会使这个地区变暖,且由于气团底部变冷,气温直减率变小,会使该地上空气层的稳定度增大,对流运动不易发展,产生稳定性天气。因为气层稳定,水汽及尘埃、烟粒等杂质常聚集在低层,所以暖气团中低层的能见度差。如果暖气团中水汽含量多,常形成层云、层积云,并下毛毛雨,有时会出现平流雾。如果暖气团中水汽含量较少,天气就较好。锋面就是温度、湿度等物理性质不同的两种气团的交界面,或者叫做过渡带。锋面与地面的交线,称为锋线,也简称为锋。锋面的长度与气团的水平距离大致相当,由几百公里到几千公里,宽度比气团小得多,只有几十公里,最宽的也不过几百公里。垂直高度与气团相当,几公里到十几公里。锋面也有冷暖、移动、静止之分。按照热力学分类方法,若冷气团主动推动暖气团,则称为冷锋。反之称为暖锋。若冷暖气团相当,则称为准静止锋。若冷锋追上暖锋,则会形成锢囚锋。 冷锋:锋面在移动过程中,冷气团起主导地位作用,推动锋面向暖气团一侧移动,这种锋面称为冷锋。冷锋过境后,冷气团占据了原来暖气团所在的位置。泠锋在中国一年四季都有,尤其在冬半年更为常见。冷气在移动过程中,由于变性程度不同,或有小股冷空气补充南下,在主锋后,即同一气团内又可形成一条副锋。一般来讲,主锋两侧的温度差值较大,而副锋两侧的温度差较小。冷锋过境后,气温下降,气压上升,天气多转晴好。 暖锋:锋面在移动过程中,若暖空气起主导作用,推动锋面向冷 气团一侧移动,这种锋机称为暖锋。暖锋过境后,暖气团就占据了原来冷气团的位置。暖锋多在中国东北地区和长江中下游活动大多与冷锋联结在一起。暖锋过境后,气温上升,气压下降,天气多转云雨天气。 准静止锋:当冷暖气团势力相当,锋面移动很慢时,称为准静止锋。事实上,绝对的静止是没有的。在这期间,冷暖气团同样是互相斗争着,有时冷气团占主导地位,有时暖气团占主导地位,使锋面来回摆动。 锢囚锋:暖气团、较冷气团和更冷气团(三个性质不同的气团)相遇时先后构成的两个锋面,然后其中一个锋面追上另一个锋面,即形成锢囚。 由于锋是冷暖气团交界地区,空气活动十分活跃,可以形成一系列的云、雨、大风、降水等天气。在中国一年四季都有锋的活动,其中冷锋活动最为经常,且能在全国广大地区出现。在春夏之交,往往会有准静止锋活动。锋的活动常经历着生成,加强,消亡的过程。一般历史3-5天左右。 暖锋系统现象随时间的变化过程。 两个性质不同的气团之间有狭窄而又倾斜的过渡带,带内气象要素和天气变化剧烈,气象上称此过渡带为锋面,与地面交界线称为锋线,锋面上方为暖气团,下方为冷气团。6、天气与气候有何区别与联系?试述广东的气候特点与成因(提示:从地理位置;温度、水分的时空分布,大气环流等方面考虑)?1、 概念不同: 天气是指某一地区在某一瞬间或某一短时间内大气状态(如T、E、P等)和大气现象(如风、云、雾、降水等)的综合。 气候是在某一时段内大量天气过程的综合。它不仅包括该地多年来经常发生的天气状况,还包括某些年份偶尔出现的极端天气状况。 气候是在多年观测到的天气基础上所得出的总结和概括,是在一定时段内由大量天气过程综合而得出的长期大气过程,二者之间存在着统计联系,从时间上反映出微观与宏观的关系。2、从时间尺度上讲: 天气是短时间的,气候是长期的 天气具有多变性,气候则比较稳定 在同一时间内不同地区的天气不完全一样,同一地区不同时间内的天气也常常是不同的。气候一般比较稳定,而且一个地方的气候特征受它所在的纬度、高度、海陆相对位置等影响较大。形成原因不同:天气由气团、锋,气候则在太阳辐射、大气环流、下垫面性质和人类活动长时间相互作用下形成3、天气是气候的基础,气候是天气的总结和概括。(联系)广东省属热带和亚热带季风气候区,气候资源十分丰富。由于地处低纬,面临广阔的海洋,因此海洋和大陆均对广东气候有非常明显的影响。冬季普遍盛行东北风或北风,来自北方既寒冷又干燥的空气,经过长途跋涉以后,增温、增湿,强度大为减弱,到达广东时风速已经变小、气温偏高,所以冬季较温暖。但个别年份在寒潮来临时,也可出现霜冻天气。春季是过渡季节,气温和降水均处在上升时期。正因为这个时候是冷暖天气交替的变化季节,所以它的不稳定性很大。有的年份会出现春光明媚的春天,而有的年份却会出现持续的低温阴雨倒春寒天气夏季,由于受海洋气团的影响,普遍吹偏南风,带来丰沛的雨水。6月份是广东前汛期的降雨高峰期,各地出现暴雨的机会甚多。同时,每年的610 月又是热带气旋影响广东的主要时段,影响广东的热带气旋,有89%以上出现在这个时段内。秋季,冷空气开始影响广东,气温逐渐下降。此时多晴朗天气,少降水,开始进入干季。热带气旋活动的次数减少。广东省地处祖国南疆,北依南岭、东北为武夷山,南临南海,东面有世界最大的海洋-太平洋;沿海港湾众多,岛屿星罗棋布。由于濒临海洋、海岸线长,易遭西太平洋及南海台风袭击,台风以及台风带来的暴雨洪水灾害相当严重7、何谓水份循环、水量平衡?世界水资源与水污染问题是如何产生的?a水分循环地球上的水从地表蒸发,凝结成云,降水到径流,积累到土中或水域,再次蒸发,进行周而复始的循环过程。 全球水循环是由太阳能驱动的,水是地球上一切物质循环和生命活动的介质,没有水循环,生态系统就无法启动,生命就会死亡。 b水量平衡是说,在一个足够长的时期里,全球范围的总蒸发量等于总降水量。c水污染主要是由人类活动产生的污染物造成,它包括工业污染源,农业污染源和生活污染源三大部分d污染物进入河流、湖泊、海洋或地下水中,使水质和底泥的物理、化学性质或生物群落组成发生变化,降低了水体的使用价值和功能的现象。 二 水污染分类及危害1 水的污染有两类:一类是自然污染;另一类是人为污染。当前对水体危害较大的是人为污染。水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。 化学性污染:污染杂质为化学物品而造成的水体污染。化学性污染根据具体污染杂质可分为6类:1)无机污染物质:污染水体的无机污染物质有酸、碱和一些无机盐类。酸碱污染使水体的pH值发生变化,妨碍水体自净作用,还会腐蚀船舶和水下建筑物,影响渔业。2)无机有毒物质:污染水体的无机有毒物质主要是重金属等有潜在长期影响的物质,主要有汞、镉、铅、砷等元素。3)有机有毒物质:污染水体的有机有毒物质主要是各种有机农药、多环芳烃、芳香烃等。它们大多是人工合成的物质,化学性质很稳定,很难被生物所分解。4)需氧污染物质:生活污水和某些工业废水中所含的碳水化合物、蛋白质、脂肪和酚、醇等有机物质可在微生物的作用下进行分解。在分解过程中需要大量氧气,故称之为需氧污染物质。5)植物营养物质:主要是生活与工业污水中的含氮、磷等植物营养物质,以及农田排水中残余的氮和磷。6)油类污染物质:主要指石油对水体的污染,尤其海洋采油和油轮事故污染最甚。物理性污染1)悬浮物质污染:悬浮物质是指水中含有的不溶性物质,包括固体物质和泡沫塑料等。它们是由生活污水、垃圾和采矿、采石、建筑、食品加工、造纸等产生的废物泄入水中或农田的水土流失所引起的。悬浮物质影响水体外观,妨碍水中植物的光合作用,减少氧气的溶入,对水生生物不利。2)热污染:来自各种工业过程的冷却水,若不采取措施,直接排入水体,可能引起水温升高、溶解氧含量降低、水中存在的某些有毒物质的毒性增加等现象,从而危及鱼类和水生生物的生长。3)放射性污染:由于原子能工业的发展,放射性矿藏的开采,核试验和核电站的建立以及同位素在医学、工业、研究等领域的应用,使放射性废水、废物显著增加,造成一定的放射性污染。生物性污染 生活污水,特别是医院污水和某些工业废水污染水体后,往往可以带入一些病原微生物。例如某些原来存在于人畜肠道中的病原细菌,如伤寒、副伤寒、霍乱细菌等都可以通过人畜粪便的污染而进入水体,随水流动而传播。一些病毒,如肝炎病毒、腺病毒等也常在污染水中发现。某些寄生虫病,如阿米巴痢疾、血吸虫病、钩端螺旋体病等也可通过水进行传播。防止病原微生物对水体的污染也是保护环境,保障人体健康的一大课题。8风沙地貌的形成需要哪些条件?防治风沙移动有哪些措施?风沙地貌是风对地表侵蚀、堆积的结果。因此地表特征、风动力状况是风沙作用及形成风沙地貌的基本条件。平坦的地面以及开阔的内陆盆地,有利于气流的运行。同时盆地内一般堆积有比较丰厚的碎屑物质,为沙丘的形成提供了重要物质来源。如我国西北地区的沙漠,大部分布在广大的内陆盆地中。干旱区雨量稀少,蒸发强烈,土质干燥,地表植被稀疏或完全裸露。因此有利于气流对地面的直接作用,从而引起沙粒的吹扬,沙丘的移动,使地面受到风沙的侵蚀。形成风沙流主要取决于两点:即有丰富的沙源外,还要有强劲的风力。干旱地区风的强度和频度都较大。如我国西北受蒙古高压的影响,盛行强劲的西北风;另外,干旱地区由于地面裸露,受强烈的日照后地面温度急剧升高,造成强烈的上升气流,因此易出现强烈的狂风。这些都为风沙地貌的发育提供了基本的条件1.加强环境的保护,把环境的保护提到法制的高度来。 2.恢复植被,加强防止风沙尘暴的生物防护体系。实行依法保护和恢复林草植被,防止土地沙化进一步扩大,尽可能减少沙尘源地。 3.根据不同地区因地制宜制定防灾、抗灾、救灾规划,积极推广各种减灾技术,并建设一批示范工程,以点带面逐步推广,进一步完善区域综合防御体系。 4.人们对自然资源进行长期掠夺式开发,因而造成对自然生态环境的严重破坏,而环境的恶化又为沙尘暴提供了丰富的沙尘物质来源。 5.控制人口增长,减轻人为因素对土地的压力,保护好环境。 6.加强沙尘暴的发生、危害与人类活动的关系的科普宣传,使人们认识到所生活的环境一旦破坏,就很难恢复,不仅加剧沙尘暴等自然灾害,还会形成恶性循环,所以人们要自觉地保护自己的生存环境。 9.试述成土母质、气候和地形对土壤形成的影响?土壤处于岩石圈、水圈、大气圈和生物圈的交界面上,各种物质和能量的交流大多通过土壤来实现,土壤的形成和发育与自然环境密切相关。19世纪,俄国土壤地理学家道库恰耶夫提出了母质、气候、生物、地形、时间5大土壤形成的自然因素。(1)土壤形成的母质因素母质是形成土壤的物质基础,对土壤的物理性状和化学组成均产生重要的作用,这种作用在土壤形成的初期阶段最为显著。随着成土过程进行得愈久,母质与土壤间性质的差别也愈大,尽管如此,土壤中总会保存有母质的某些特征。风化作用使岩石破碎,理化性质改变,形成结构疏松的风化壳,其上部可称为土壤母质。如果风化壳保留在原地,形成残积物,便称为残积母质;如果在重力、流水、风力、冰川等作用下风化物质被迁移形成崩积物、冲积物、海积物、湖积物、冰碛物和风积物等,则称为运积母质。成土母质是土壤形成的物质基础和植物矿质养分元素(氮除外)的最初来源。母质代表土壤的初始状态,它在气候与生物的作用下,经过上千年的时间,才逐渐转变成可生长植物的土壤。首先,成土母质的类型与土壤质地关系密切。不同造岩矿物的抗风化能力差别显著,其由大到小的顺序大致为:石英白云母钾长石黑云母钠长石 角闪石辉石钙长石橄榄石。因此,发育在基性岩母质上的土壤质地一般较细,含粉砂和粘粒较多,含砂粒较少;发育在石英含量较高的酸性岩母质上的土壤质地一般较粗,即含砂粒较多而含粉砂和粘粒较少。此外,发育在残积物和坡积物上的土壤含石块较多,而在洪积物和冲积物上发育的土壤具有明显的质地分层特征。其次,土壤的矿物组成和化学组成深受成土母质的影响。不同岩石的矿物组成有明显的差别,使其上发育的土壤的矿物组成也就不同。发育在基性岩母质上的土壤,含角闪石、辉石、黑云母等深色矿物较多;发育在酸性岩母质上的土壤,含石英、正长石和白云母等浅色矿物较多;其他如冰碛物和黄土母质上发育的土壤,含水云母和绿泥石等粘土矿物较多,河流冲积物上发育的土壤亦富含水云母,湖积物上发育的土壤中多蒙脱石和水云母等粘土矿物。从化学组成方面看,基性岩母质上的土壤一般铁、锰、镁、钙含量高于酸性岩母质上的土壤,而硅、钠、钾含量则低于酸性岩母质上的土壤,石灰岩母质上的土壤,钙的含量最高。(2)土壤形成的气候因素气候对于土壤形成的影响,表现为直接影响和间接影响两个方面。直接影响指通过土壤与大气之间经常进行的水分和热量交换,对土壤水、热状况和土壤中物理、化学过程的性质与强度的影响。通常温度每增加10,化学反应速度平均增加12倍;温度从0增加到50,化合物的解离度增加7倍。在寒冷的气候条件下,一年中土壤冻结达几个月之久,微生物分解作用非常缓慢,使有机质积累起来;而在常年温暖湿润的气候条件下,微生物活动旺盛,全年都能分解有机质,使有机质含量趋于减少。气候还可以通过影响岩石风化过程以及植被类型等间接地影响土壤的形成和发育。一个显著的例子是,从干燥的荒漠地带或低温的苔原地带到高温多雨的热带雨林地带,随着温度、降水、蒸发以及不同植被生产力的变化,有机残体归还逐渐增多,化学与生物风化逐渐增强,风化壳逐渐加厚 。(3)土壤形成的地形因素地形对土壤形成的影响主要是通过引起物质、能量的再分配而间接地作用于土壤的。在山区,由于温度、降水和湿度随着地势升高的垂直变化,形成不同的气候和植被带,导致土壤的组成成分和理化性质均发生显著的垂直地带分化。对美国西南部山区土壤特性的考察发现,土壤有机质含量、总孔隙度和持水量均随海拔高度的升高而增加,而pH值随海拔高度的升高而降低。此外,坡度和坡向也可改变水、热条件和植被状况,从而影响土壤的发育。在陡峭的山坡上,由于重力作用和地表径流的侵蚀力往往加速疏松地表物质的迁移,所以很难发育成深厚的土壤;而在平坦的地形部位,地
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!