磁共振基本原理及读片.ppt

上传人:y****3 文档编号:7122664 上传时间:2020-03-13 格式:PPT 页数:139 大小:10.81MB
返回 下载 相关 举报
磁共振基本原理及读片.ppt_第1页
第1页 / 共139页
磁共振基本原理及读片.ppt_第2页
第2页 / 共139页
磁共振基本原理及读片.ppt_第3页
第3页 / 共139页
点击查看更多>>
资源描述
磁共振成像 MagneticResonanceImaging 中国石油中心医院磁共振室杨景震 基本原理及读片 主要内容 医学影像学概况及磁共振技术的发展简要介绍磁共振成像基本原理及概念磁共振检查方法及临床应用磁共振成像的主要优点及限度如何阅读磁共振图像影像学检查常见名词概念读片 医学影像学的形成 1895年R entgen发现X线 形成放射诊断学 diagnosticradiology 20世纪50年代出现超声 ultrasonography USG 检查20世纪60年代出现核素 scintigraphy 扫描20世纪70年代出现CT x raycomputedtomography CT 检查20世纪80年代出现MRI magneticresonanceimaging MRI 检查20世纪80年代出现发射体层成像 emissioncomputedtomography ECT 20世纪90年代正电子发射体层成像 positronemissiontomography PET 20世纪70年代以后兴起介入放射学 interventionalradiology 21世纪初出现CT PET X线源体外放射源 核素 声能磁场微电子技术计算机技术 医学影像学各种技术涉及 当今的医学影像学内容包括 传统X线诊断学透视照相 普通 摄影 体层摄影 造影计算X线摄影 computedradiography CR 数字X线摄影 Digitalradiography DR X线CT computedTomography CT 数字减影血管造影 DigitalSubtractionAngiography DSA 介入放射学 interventionalradiology 超声成像 UltrasonicImaging 发射型计算断 体 层摄影 EmissioncomputedTomography ECT 正电子发射型计算断 体 层摄影 PositronEmissioncomputedTomography PET 单光子发射型计算断 体 层摄影 SinglephotonEmissioncomputedTomography SPECT 磁共振成像 MagneticResonanceImaging MRI 分子影像学 MolecularImaging 21世纪最前沿课题技术 PET或PET CT MR CT 光学成像 生物发光 荧光 信息放射学系统 radiologyinformationsystem 图像存档与传输系统 PictureArchivingandCommunicationSystem PACS 影像科管理 qualitycontrol QC qualityassurance QA 全新的医学影像学在医学领域的应用包括 影像诊断学 X线 CT DSA MRI US ECT等 影像介入性治疗学 DSA 超声 CT MR等 信息放射学 影像学工作管理 质控 影像的传输与存储 PACS 存储 传输 远程会诊 远程放射学teleradiology 1946发现磁共振现象BlochPurcell1971发现肿瘤的T1 T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像Mallard1980磁共振装置商品化2003诺贝尔奖金LauterburMansfierd 时间 发生事件 作者或公司 磁共振发展史 MR成像基本原理 实现人体磁共振成像的条件 人体内氢原子核作为磁共振中的靶子 它是人体内最多的物质 H核只含一个质子不含中子 最不稳定 最易受外加磁场的影响而发生磁共振现象有一个稳定的静磁场 磁体 常导型 永磁型 超导型 0 15 3 0T梯度场和射频场 前者用于空间编码和选层 后者施加特定频率的射频脉冲 使之形成磁共振现象信号接收装置 各种线圈计算机系统 完成信号采集 传输 图像重建 后处理等 磁共振成像的过程 人体内的H核子可看作是自旋状态下的小星球 自然状态下 H核进动杂乱无章 磁性相互抵消 按照单一核子进动原理 质子群在静磁场中形成的宏观磁化矢量M z M y x 进入静磁场后 H核磁矩发生规律性排列 正负方向 正负方向的磁矢量相互抵消后 少数正向排列 低能态 的H核合成总磁化矢量M 即为MR信号基础 Z Z Y Y X B0 X MZ MXY A 施加90度RF脉冲前的磁化矢量MzB 施加90度RF脉冲后的磁化矢量Mxy 并以Larmor频率横向施进C 90度脉冲对磁化矢量的作用 即M以螺旋运动的形式倾倒到横向平面 A B C 在这一过程中 产生能量 B0 Z Z Z Z Z Y Y Y Y Y X X X X X 90度 3 5 该过程称弛豫 relaxation 即将能量 MR信号 释放出来 整个弛豫过程实际上是磁化矢量在横轴上缩短 横向或T2弛豫 和纵轴上延长 纵向或T1弛豫 而人体各类组织均有特定T1 T2值 这些值之间的差异形成信号对比 1 静磁场中 2 90度脉冲 3 脉冲停止后 4 停止后一定时间 5 恢复到平衡状态 纵向弛豫或称自旋 晶格弛豫 T1弛豫 横向弛豫或称自旋自旋弛豫 T2弛豫 人体 进入磁场 磁化 施加射频脉冲 H核磁矩发生90 偏转 产生能量 射频脉冲停止 弛豫过程开始 释放所产生的能量 形成MR信号 信号接收系统 计算机系统 在弛豫过程中 即释放能量 形成MR信号 涉及到2个时间常数 纵向弛豫时间常数 T1 横向弛豫时间常数 T2 加权 weighted 的概念 MR成像过程中 T1 T2弛豫二者同时存在 只是在某一时间内所占的比重不同 如果选择突出纵向 T1 弛豫特征的扫描参数 脉冲重复时间和回波时间 以毫秒计 用来采集图像 即可得到以T1弛豫为主的图像 当然其中仍有少量T2弛豫成分 因是以T1弛豫为主 故称为T1加权像 weightedImagingWI 如果选择突出横向 T2 弛豫特征的扫描参数采集图像 加权或称权重 有侧重 为主的意思 因为人体各种组织如肌肉 脂肪 体液等 各自都具有不同的T1和T2弛豫时间值 所以形成的信号强度各异 因此可得到黑白不同灰度的图像 磁共振常规检查图像的特点 层面成像 成像参数多 任意多方位直接成像 血管流空效应 人体不同组织的MR信号特点 黑白灰度对比 X光片 CT均以密度高低为特征MR图象是以信号高低 强弱为特征水 长T1 黑 长T2 白 骨皮质 完全性的钙化 黑 无信号 脂肪 短T1 白 短T2 暗灰 血流 常规扫描为流空 黑 肌肉 长T1 黑 短T2 黑 大多数肿瘤 长T1 长T2黑色素瘤 短T1 短T2 磁共振成像检查方法 MR检查方法 普通检查 采用不同脉冲序列 不同方位 对病变部位进行扫描 包括脂肪或水抑制 FS FLAIR FluidAttenuatedInversionRecovery 抑制水的重度T2加权像 也称黑水技术 即抑制自由水 如脑脊液 对邻近脑脊液病变的显示更有利 增强检查 静脉内注射造影剂进行扫描 用于鉴别诊断等 MR所用造影剂与CT的造影剂不同 除不是碘剂不存在过敏之外 其作用的原理也不同 MR造影剂 顺磁性物质 是改变病变部位磁环境 缩短H质子的T1 T2弛豫 但T2的缩短不如T1明显 造影剂入血行 病变组织间隙 与病变组织大分子结合 T1驰豫接近脂肪或Larmor频率 T1缩短 强化 白 称间接增强 影响因素 病变区的血流 灌注 血脑屏障 与血液内的药浓度不绝对成正比 达一定浓度后不起作用 直接提高病变区X线衰减值 称直接增强 CT造影剂 碘制剂 血管丰富程度血流灌注如何血液内碘浓度高低血脑屏障完整与否 特殊检查 血管成像 MagneticResonanceAngiographyMRA 利用流动的血液进行血流的直接成像可用于动脉或静脉的检查 若同时使用造影剂 称增强血管成像 CE MRA 血管成像用于血管畸形 动脉瘤 血管狭窄或闭塞 但目前仍不能代替DSA 特点 简便 无创伤 水成像 胆道成像 MagneticResonanceCholangio pancreatography MRCP不使用造影剂 利用胆汁 水 进行成像 用于胆道梗阻检查 尿路成像 MagneticResonanceUrography MRU不使用造影剂 利用尿液进行成像 硬膜囊成像 MagneticResonanceMyelography MRM不使用造影剂 利用脑脊液进行成像 内耳膜迷路成像 MagneticResonanceLabyrinthography MRL不使用造影剂利用迷路内的淋巴液进行成像 结肠水成像 向结肠内注入水后 进行结肠人工水造影 胃 小肠也同样可进行此项检查 仿真内窥镜 同CT一样 利用计算机所作的图像的后处理技术之一 MRI三维重建 MR电影成像 MagneticResonancecineMRC 对运动的脏器实施快速成像 采集脏器运动中的不同时段 时相 的 静态 图像 再利用计算机技术快速 连续显示 例如 关节 心脏等 正常心脏电影 静态图 动画 轻看flash 功能MR成像 fMRI 从范围上有1 灌注加权成像 Perfusion WeightedImaging PWI包括外源性和内源性 2 弥散加权成像 Diffusion WeightedImaging DWI3 MR波谱分析 MagneticResonancespectroscopy MRS 神经元兴奋区兴奋性 兴奋区静脉血中氧和血红蛋白相对 去氧血红蛋白相对 去氧血红蛋白的顺磁作用 可使T2 信号 由于去氧血红蛋白的减少 神经元兴奋区信号相对 内源性PWI称血氧水平依赖法 BOLD 简单原理 外源性灌注加权成像PWI 用超快速MR扫描技术 进行造影剂跟踪 显示造影剂首次通过的组织血流灌注情况并依需要作延迟增强 常用于脑 心肌的检查 弥散加权成像DWI 是以MR流动效应为基础的成像方法 与MRA不同的是 MRA观察的是宏观的血流现象 而DWI观察的是微观的水分子流动扩散现象 脑发生缺血时 PWI先有异常 出在6小时内 超急期 此时溶栓治疗 疗效最佳 若出现DWI异常时 则易出血 若T2WI出现病灶时 则为不可逆的 PWI DWI T2WI 脑弥散加权成像 DWI 是使用一对大小相等 方向相反的扩散敏感梯度场 该梯度场对静止组织作用的总和为零 但水分子在不断扩散 受该梯度场影响而产生相位变化 梗死区域水含量增加 其早期细胞毒性水肿使水分子扩散下降 而在产生T2信号改变之前 在DWI显示出早期的脑梗死 右侧急性轻瘫 症状4小时 T2加权像无异常 同一时间 弥散加权像 4秒 见大片高信号 C E同一时间 团注对比剂5 10秒内的灌注成像 缺血区显示对比剂到达延迟 C D为病变区对比剂消散延迟 E为45秒后灌注基本趋于正常 理解弥散成像的原理 细胞正常 水分子游动自由 细胞毒性水肿时 较多的细胞外液进入细胞内 使细胞内 外水分子游动缓慢 胞 细 水 子 分 DTI的物理 神经束对MR机的三个轴 X Y Z 的关系形成其在MR成像中的方向性 并导致与方向有关的弥散测量 各向异性 3 D弥散呈椭圆形 三个本征矢量代表其弥散方向 本征值确定其形态 本征矢量本征值 本征值 三个本征矢量的矩阵 源于弥散方向性的张量 ADC 弓形纤维的神经束图 弓形纤维 短联合纤维束 a 胼胝体的神经束图 冠状面 与彩色编码的FA图融合 横断面 矢状面 胼胝体上纵束下纵束皮质脊髓束 多神经束的神经束图 矢状面 横断面 各神经束可随意标示为各种不同颜色 FLAIR T2WI T1WIC T1WIC 脑膜上皮型脑膜瘤 常规MRI显示脑膜瘤的典型表现 何神经束受犯 良性脑膜瘤瘤 较大量瘤细胞浸润 上纵束向下移位 脑膜上皮型脑膜瘤 彩色编码的FA图 神经束成像图 彩色编码的FA图 在彩色编码的FA图和神经束成像图上显示一良性肿瘤所造成的神经束推移征 即上纵束和放射冠被推移 但仍保持原来色彩 符合脑膜瘤的诊断 显示胶元纤维所构成之肿瘤包膜 箭 肿瘤呈神经束推移型表现 提示瘤周无肿瘤细胞浸润 为良性肿瘤 符合脑膜瘤诊断 放射冠 胶元纤维构成的包膜 MR心肌灌注成像 造影剂首次通过相造影剂延迟增强相诊断1 正常的心肌2 缺血的心肌3 心肌梗死后心肌存活状况 顿抑心肌及冬眠心肌 4 死亡心肌 心肌缺血发现的敏感性和特异性 MR灌注成像 敏感性92 94 特异性87 96 ECT 敏感性65 特异性82 磁共振波谱 MRS 研究人体能量代谢病生理改变 通过显示组织生化学波谱 发现病变 这种生化代谢异常更早于病理形态学异常 MRI MRS 诊断 更敏感 更早期 更特异 MRS是一种化学位移技术 均匀磁场中 同种元素的同一种原子由于其化学结构差异 拉莫尔频率也不相同 这种频率差异称化学位移MRS实际是某种原子的化学位移分布图 横轴 化学位移 纵轴 各种具有不同化学位移原子的相对含量 MR全身一次成像 水知道 答案 磁共振成像主要优点与限度 MR检查的主要优点 无射线 成像参数多 直接多方位成像 不使用造影剂可进行血管或流体成像 无创性 脑 脊髓 椎间盘检查中具有其他任何影象检查不能取代的优势 骨关节系统显示病变敏感 软骨及软组织分辨好 MR的生理 功能成像突破了影象学以大体病理形为诊断依据的传统模式 数据重建技术做三维立体重建或仿真内窥镜显示 MR检查的限度及存在的问题 某些病变定性困难 MR成像仍相对较长 主要是限于信号采集 运动伪影 某些部位的血管成像尚需DSA 如冠脉 某些血管性病变术前的金标准仍借助DSA 引进和检查费用相对昂贵 禁忌症 带心脏起搏器 胰岛素泵 体内金属假肢 眼球内金属异物 颅内动脉瘤银夹术后时间较短者 严重不合作者 精神病 危重病人 幽闭恐怖症 怎样阅读常规检查的MR图像 1 熟悉图像上的常用标记 姓名 年龄 日期 左右 层厚以及增强的标记等2 仔细观察每一帧图像 目的在于发现疾病或异常的征象3 当发现病变后 应看其病变在T1加权 T2加权上的信号特征 是高信号 低信号 等信号 混杂信号 无信号4 通过不同方位图像观察 确定病变形态 数量 大小 位置5 观察病变邻近器官或组织结构有无异常 受压 移位 占位效应 扩张 增大 失空间效应 破坏或吸收 等等6 增强扫描观察病变有无强化及强化程度 延迟扫描强化特点7 综合MR所见 结合临床及其他影像学检查材料作出诊断 常用术语 阴影 密度 回声 信号 增强扫描 强化 高密度 低密度 等密度 混杂密度 高信号 低信号 等信号 混杂信号 占位效应 失空间效应 窗技术 影像学中常见的名词概念的一般性了解阴影 回声 信号密度 影像学术语 密度有双重含义 即物质密度与影像密度二种 物质密度系指单位体积内的物质质量 由物质的组成成分和空间排布情况决定 影像密度则指照片上模拟影像的黑化程度 即对光的吸收程度高密度 低密度 等密度 混杂密度 影像学术语在CT或X线检查中 以相邻结构作参照 进行兴趣区密度的判定 传统的X线技术仅以肉眼作大致的分辨 而CT则可获得标定的密度值 即CT值 获得病变密度的定量 CT值 影像学术语 在CT扫描中 X线衰减系数的单位 CT图像中兴趣区组织的密度单位 窗技术 影像学术语 包括窗位 窗中心 窗宽数字成像使用的后处理技术 人眼密度分辨能力仅16 20个灰阶 不能同时区分数字影像全灰阶 如CT有2000个灰阶 若在数字化影像上以某一灰阶为中心点 使该中心上 下一定范围内的灰阶作选择性显示 获得病变区最适宜肉眼观察的灰度对比 该中心即为窗位处理 windowlevelprocessing 同理 仅选择性显示某一定范围的部分灰阶 而该范围之上 下的灰阶则均从图像上删除 全 白 或 黑 这称为窗宽处理 windowwidthprocessing 这犹如在一面很宽的墙面上开窗 使观者只能透过开的窗子观察到限定范围的窗外景物 但看不到窗子允许观察的视野以外的景物窗技术并不改变原始图像信息 是回顾性实施的 可以任意设置 重复和调整 0 4095 0 1000 1000 2000 全白 全黑 空气 水 骨 脂肪 软组织 MR CT 增强扫描 增强检查 影像学术语在CT或MR检查中 当普通扫描 平扫 不能满足诊断时 采取向静脉内注入对比剂 利用对比剂在不同组织内的分布差异 使组织间的密度或信号强度差别增大 这种方法称增强检查 一般以平扫为基础强化 影像学术语在CT或MR的增强检查中 通过静脉内注射对比剂 使组织的密度增高或信号增强的这种变化称为强化无论CT或MR 在增强检查中 一些正常的组织结构可以出现强化 称生理性强化 凡正常时不应出现强化的组织结构出现强化则称病理性强化 或异常强化病变出现强化时 一定程度上反映病变的血供情况 血流灌注特点以及血脑屏障的完整程度 对判断病变的性质有帮助 层面成像的部分容积效应 占位效应与失空间效应 窗技术 肺窗 纵隔窗 平扫与增强 大家一起读片 一 颅脑正常MR表现 M 1y 小脑梗塞与脑池 新鲜与陈旧脑梗塞1 新鲜与陈旧脑梗塞2 血管周围间隙 Vircho Robinspaces 外伤性 血肿破入蛛网膜下腔 中线移位 脑出血破入脑室 脑室铸型 脑出血CT 脑出血MRI T2WI T1WI T2WI 2例陈旧性血肿 外囊区 右侧额叶星形细胞瘤MR平扫及增强 右侧顶区脑膜瘤MR平扫及增强 垂体正常平片 垂体瘤平片 垂体正常MRI表现 平扫 增强 垂体微腺瘤 垂体大腺瘤 右侧听神经瘤MR 亚急性硬膜外血肿MRI 亚急性硬膜下血肿MRI FLAIR 脑内多发性血肿MRI CO中毒MR 急性甘蔗中毒 治疗3个月后 脑囊虫MR平扫和增强 CT平扫表现 男 43岁 头疼 呕吐 左侧半身不利9天 5天前有高热 白细胞2万 3月 6日 3月 1日 平扫 增强扫描 治疗后第12日 第10日 Chiari 畸形 3例 男70岁 额叶萎缩 外伤后脑萎缩 脑干 小脑萎缩 女 6岁 突发癫痫 男 36岁 左侧剧烈头疼 正常颈椎 正常胸椎 正常腰椎 椎间盘突出 椎间盘突出 颈髓损伤 脊椎关节病 黄韧带肥厚 固有性椎管狭窄 脊膜瘤 胸椎转移瘤侵犯硬膜外 左下肺癌 小细胞肺癌 正常心脏电影 静态图 MRIT2WI MRIT1WI MRCP MR胆胰管水成像 正常胰腺MRI表现 增强扫描 T2 T1 肝囊肿 肝囊肿 胆囊颈部及胆总管结石 肝癌 左肾癌 平扫 增强 女 9岁 血尿 Wilms氏瘤 男 51 无自觉症状 超声发现双侧肾上腺占位病变 右侧肾上腺嗜铬细胞瘤 男 4岁 左侧肾上腺神经母细胞瘤 多囊肝 多囊肾 祝大家学习生活愉快
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 临时分类 > 职业技能


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!