晶体内部结构的微观对称和空间群.ppt

上传人:xin****828 文档编号:6369971 上传时间:2020-02-24 格式:PPT 页数:59 大小:4.39MB
返回 下载 相关 举报
晶体内部结构的微观对称和空间群.ppt_第1页
第1页 / 共59页
晶体内部结构的微观对称和空间群.ppt_第2页
第2页 / 共59页
晶体内部结构的微观对称和空间群.ppt_第3页
第3页 / 共59页
点击查看更多>>
资源描述
第八章晶体内部结构的微观对称和空间群 十四种空间格子空间点阵中结点 行列和面网的指标晶体内部结构的对称要素空间群等效点系 1 平行六面体的选择对于每一种晶体结构而言 其结点的分布是客观存在的 但平行六面体的选择是人为的 一 十四种空间格子 所选取的平行六面体应能反映结点分布固有的对称性 在上述前提下 所选取的平行六面体棱与棱之间的直角力求最多 在满足以上两条件的基础上 所选取的平行六面体的体积力求最小 十四种空间格子 平行六面体的选择原则 空间格子的划分 划分7种平行六面体对应于7个晶系形状及参数 十四种空间格子 4mm 十四种空间格子 2 平行六面体中结点的分布 1 原始格子 primitive P 结点分布于平行六面体的八个角顶 2 底心格子 end centered C A B 结点分布于平行六面体的角顶及某一对面的中心 3 体心格子 body centered I 结点分布于平行六面体的角顶和体中心 4 面心格子 face centered F 结点分布于平行六面体的角顶和三对面的中心 十四种空间格子 以下两个平面点阵图案 画出其空间格子 十四种空间格子 4mm L44P mm2 L22P 4mm 十四种空间格子 引出问题 空间格子可以有带心的格子 另外请思考 如果上面的图案对称为3m 该怎么画 十四种空间格子 mm2 总结 在四种格子类型当中 其中底心 体心 面心格子称带心的格子 这是因为有些晶体结构在符合其对称的前提下不能画出原始格子 只能画出带心的格子 十四种空间格子 七个晶系 七套晶体常数 七种平行六面体种形状 每种形状有四种类型 那么就有7 4 28种空间格子 但在这28种中 某些类型的格子彼此重复并可转换 还有一些不符合某晶系的对称特点而不能在该晶系中存在 因此 只有14种空间格子 也叫14种布拉维格子 A Bravis于1848年最先推导出来的 举例说明 1 四方底心格子可转变为体积更小的四方原始格子 2 在等轴晶系中 若在立方格子中的一对面的中心安置结点 则完全不符合等轴晶系具有4L3的对称特点 故不可能存在立方底心格子 十四种空间格子 例1 四方底心格子 四方原始格子 十四种空间格子 例2 立方底心格子不符合等轴晶系对称思考 立方底心格子符合什么晶系的对称 十四种空间格子 空间格子的划分 Whynot7 4 28 请判断CsCl的格子类型 十四种空间格子 举例 金红石和石盐晶体模型 上述画格子的条件实质上与前面所讲的晶体定向的原则是一致的 回忆晶体定向原则 也就是说 我们在宏观晶体上选出的晶轴就是内部晶体结构中空间格子三个方向的行列 十四种空间格子 平行六面体的形状和大小用它的三根棱长 轴长 a b c及棱间的夹角 轴角 表征 这组参数 a b c 即为晶胞参数 在晶体宏观形态中我们可以得到各晶系的晶体常数特点 是根据晶轴对称特点得出的 宏观上的晶体常数与微观的晶胞参数是对应的 但微观的晶体结构中我们可以得到晶胞参数的具体数值 十四种空间格子 3 各晶系平行六面体的形状和大小 二 空间格子中结点 行列和面网的指标 空间格子中 结点 行列和面网可进行指标 即通过一定的符号形式把它们的位置或方法表示出来 点的坐标行列符号面网符号 点的坐标coordinatesofpoint 点的坐标的表示方法与空间解析几何中确定空间某点的坐标位置的标记方法完全相同 表达形式为u v w 可以全为正值 1 1 1也可以有负值 x x 0分数 1 2 1 2 1 2小数 0 5 0 5 0 5例 金红石中x 0 33 点的坐标coordinatesofpoint 空间格子中结点 行列符号的表示方法图中粗实线及箭头表示行列方向 圆圈代表结点 行列符号 rowsymbol 行列符号与晶棱符号在表示方法及形式上完全相同 即 uvw 行列符号特征 表示一组互相平行 取向相同的行列 等效行列 可通过晶体结构中的对称要素联系起来的一组行列 用表示 例 等轴晶系中 100 100 010 0 10 001 00 1 可用表示 面网符号 面网符号与晶面符号的表示方法及形式基本相同 但晶面符号是表示某一个晶面的位置 空间方位 而面网符号是表示一组相互平行且面网间距相等的面网 对 hkl 一组面网 面网间距用dhkl表示 hkl绝对值越小 每一项指数的绝对值相加 dhkl愈大 面网密度也大 hkl绝对值越大 dhkl愈小 面网密度也小 晶面符号 hkl 中无公约数 但对于面网符号 可以有公约数 面网符号 平行于 010 晶面的几组面网的符号 面网符号 面网符号中存在以下关系 dnhnknl 1 ndhkld030 1 3d010例如 金刚石 diamond CuK 1 5046nm a 3 536 Fd3m 测得d440 0 63 则d220 1 26 d110 2 52 合成锐钛矿 TiO2 d008 1 1871 则d004 2 3742 d303 1 1714 则d101 3 5144 三 晶体内部结构的对称要素 研究空间格子仅仅是研究了晶体结构的平移对称性 除了平移对称外 晶体结构还有与宏观形态上一样的旋转 反映对称 并且这些旋转 反映操作与平移操作复合起来就会产生内部结构特有的一些对称要素 平移轴 translationaxis 螺旋轴 screwaxis 滑移面 glideplane 平移轴 translationaxis 为一直线方向 相应的对称操作为沿此直线方向平移一定的距离 对于具有平移轴的图形 当施行上述对称操作后 可使图形相同部分重复 在平移这一对称变换中 能够使图形复原的最小平移距离 称为平移轴的移距 晶体结构中的行列均是平移轴平移轴有无限多 晶体微观对称元素 螺旋轴 screwaxis 晶体微观对称元素 是一种复合的对称元素 其辅助几何要素为 一根假想的直线及与之平行的直线方向 相应的对称操作为 围绕此直接旋转一定角度 沿此直线方向平移一定距离后 结构中的每一质点都与其相同的质点重合 螺旋轴的国际符号一般写成ns n为轴次 s为小于n的自然数 有2 3 4 6次四个轴次 分为21 31 32 41 42 43 61 62 63 64 65等11种 晶体微观对称元素 螺旋轴 screwaxis ns2131 3241 42 436l 62 63 64 65 螺旋轴 screwaxis 晶体微观对称元素 若沿螺旋轴方向的结点间距标记为T 则质点平移的距离t应为 s n T 其中t称为螺距 螺旋轴据其轴次和螺距可分为21 31 32 41 42 43 61 62 63 64 65共11种 它们各代表什么意思 举例 41意为按右旋方向旋转90度后移距1 4T 而43意为按右旋方向旋转90度后移距3 4T 那么 41和43是什么关系 晶体微观对称元素 螺旋轴 screwaxis 43在旋转2个90度后移距2 3 4T 1T 1 2T 旋转3个90度后移距3 3 4T 2T 1 4T T的整数倍移距相当于平移轴 可以剔除 所以 43相当于旋转270度移距1 4T 也即反向旋转90度移距1 4T 所以 41和43是旋向相反的关系 晶体微观对称元素 晶体微观对称元素 螺旋轴 screwaxis 规定 41为右旋 43则为左旋 但43右旋时移距应为3 4T 即螺旋轴的国际符号ns是以右旋为准的 凡0 s n 2者 为右旋螺旋轴 包括31 41 61 62 凡n 2 s n者 为左旋螺旋轴 包括32 43 64 65 而s n 2者 为中性螺旋轴 包括21 42 63 螺旋轴 screwaxis 晶体微观对称元素 滑移面 glideplane 亦称象移面 是一种复合的对称要素 其辅助几何要素有两个 一个假想的平面和平行此平面的某一直线方向 相应的对称操作为 对于此平面的反映和沿此直线方向平移的联合 其平移的距离等于该方向行列结点间距的一半 分为a b c n d等5种 晶体微观对称元素 滑移面按其滑移的方向和距离可分为a b c n d五种 其中a b c为轴向滑移 移距分别为1 2a 1 2b 1 2c n为对角线滑移 移距为1 2 a b or1 2 b c 等 d为金刚石型滑移 移距为1 4 a b 等 晶体微观对称元素 滑移面 glideplane 举例 闪锌矿 NaCl晶体 金刚石 滑移面 glideplane a b c n d 晶体微观对称元素 晶体中可能的对称元素及其符号 四 空间群 晶体内部结构的对称要素 操作 的组合 空间群共有230种 空间群亦称之为费德洛夫群 Fedrovgroup 或圣佛利斯群 Schoenfliesgroup 一个空间群可看成是由两部分组成的 一部分是晶体结构中所有平移轴的集合 称为平移群 另一部分就是点群 即晶体宏观对称要素的集合 空间群是从对称型 点群 中推导出来的 每一对称型 点群 可产生多个空间群 所以32个对称型 点群 可产生230种空间群 空间群的表示方法与对称型的符号一致 共两种 即国际符号和圣佛利斯符号 空间群 spacegroup 的概念 空间群的国际符号包含了空间格子类型 对称元素及其相互之间的关系 分两个部分 前一部分为大写英文字母 是平移群的符号 即布拉维格子 P C A B I F 的符号 后一部分与对称型 点群 的国际符号基本相同 只是其中晶体的某些宏观对称要素的符号需换成相应的内部结构对称要素的符号 如L4对应的国际符号为P4 P41 P42 P43 I4和I41 优点 可直接看出格子类型和各方向存在哪些对称要素 缺点 同一空间群由于不同的定向以及其他因素可以写成不同的国际符号 空间群的国际符号 空间群的国际符号和圣佛利斯符号 空间群 空间群的国际符号 空间群的圣佛利斯符号 空间群的圣佛利斯符号表示方法很简单 即在其对称型的圣佛利斯符号的右上角加上序号即可 如对称型L4的圣佛利斯符号为C4 与它对应的六个空间群的圣佛利斯符号分别为C41 C42 C43 C44 C45 C46 优点 每一种圣佛利斯符号只与一种空间群对应 缺点 不能直观看出格子类型和各方向存在哪些对称要素 空间群 所以 在表示空间群时 鉴于两种符号各自的特点 一般采用两种符号并用 例如 金红石 D4h14 P42 mnm它的点群是什么 格子类型是什么 在什么方向有什么对称要素 金刚石 Oh7 Fd3m闪锌矿 Td2 F43m 有限图形 晶体形态 无限图形 晶体结构 点操作 有一个点不动 空间操作m Ln c m Ln ns a b c d n 空间群与对称型 点群 体现了晶体内部结构的对称与晶体外形对称的统一 如在晶体外形的某一方向上有4 则在晶体内部结构中相应的方向可能是4 41 42或许43 也可能有2 空间群 空间群与对称型 点群 的区别 空间群的投影 在晶体结构中 由一原始点经空间群中所有对称要素操作所推导出来的规则点系 这些点所分布的空间位置称之为等效位置 等效点系与空间群的关系 相当于单形与对称型 点群 的关系在晶体结构中 质点按等效点系分布 同种类型质点占据一套或几套等效点系 不同种类型质点不能占据同一套等效点系 等效点系的概念 setofequivalentpositions 思考 晶体结构中同种质点 相当点 等效点 五 等效点系 等效点系的描述 setofequivalentpositions 重复点数一套等效点系在一个单位晶胞中所拥有的等效点的数目称该等效点系的重复点数 Wyckoff符号对不同的等效点系 分别给予不同的记号如a b c d e f g h 等小写英文字母予以代表 称为各等效点系的魏科夫符号 点位置上的对称性是指该套等效点系的等效点所处位置上环境的对称性 等效点系 等效点系的描述 setofequivalentpositions 点的坐标是指对一个单位晶胞中的等效点的坐标 它与前述对空间格子中结点的坐标方法基本相同 其坐标值以轴单位的系数形式给出 对于确定的值以分数 小数 0或1来表示 对不确定者则以x y z表示之 由于对等效点系的坐标仅局限于一个单位晶胞的范围内 故在坐标值中不可能出现大于1的情况 特殊等效点系vs 一般等效点系位于对称要素上的点系叫特殊等效点系 特殊等效点系的点数较少 不位于对称要素上的点系叫一般等效点系 一般等效点系对称程度最低 而重复点数总是最多 通常只考虑在一个单位晶胞范围内的情况 即在单位晶胞中 彼此能对称重复的各个结构位置 构成一个等效位置组 把等效位置抽象成几何点 该集合便称为等效点系 晶体结构中的空间群 对应于宏观晶体中的点群 而等效位置组的概念 则相似于单形的概念 等效点系 单形晶体外形宏观等效点系内部结构微观 当一晶体的宏观对称 物理性质及化学成分等已知 且已确定了其晶胞参数 空间群而需解析晶体结构 即确定该晶体中各种质点的占位情况 或为了某种目的需深入讨论晶体结构中质点的占位情况时 就必须应用等效点系的理论和知识 等效点系的理论 从几何方面解决了晶体结构中质点在空间分布的规律性问题 等效点系 举例 方解石 方解石 CaCO3spacegroup R 3cZ 6 在单胞内含有30个原子Ca占据6a位置0 0 0 C占据6b位置0 0 O占据18e位置x 0 x 0 275 其他27个原子的位置 空间群的对称性使得原本复杂的事物描述起来是如此简单 等效点系 Pnma 62 等效点系 本章重点总结 平行六面体的选择 即格子的画法 内部结构的对称与外部形态对称的统一 为什么只有14种空间格子的原因 会读懂内部对称要素的各种符号 如 31 42 65 n d 空间群及其国际符号 如 Pn3m Cmcm 还应指出的是 对于三 六方晶系的四轴定向也可转换成三轴定向 变为菱面体格子 我们一般都用四轴定向 另外 六方原始格子为六方柱的顶底面加心 不要误认为六方底心格子 十四种空间格子 同学们 再见
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!