资源描述
专题强化训练(四) (建议用时:45分钟)学业达标练一、选择题1cos 555的值为() 【导学号:84352357】ABC DBcos 555cos(36018015)cos 15cos(4530).2sin cos(30)cos sin(30)等于()A BC DAsin cos(30)cos sin(30)sin(30)sin(30)sin 30.3已知,sin ,cos ,则等于() 【导学号:84352358】A BCD或A,sin ,cos ,cos ,sin ,sin()sin cos cos sin ,又,.4函数ycos2sin21是()A最小正周期为2的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为2的偶函数Cy1coscossin 2x,f(x)是最小正周期为的奇函数5设函数f(x)cos2xsin xcos xa(其中0,aR)且f(x)的图象在y轴右侧的第一个最高点的横坐标是,则的值为() 【导学号:84352359】A BC DAf(x)cos 2xsin 2xasina,依题意得2.二、填空题6已知函数f(x)sin(x)sincos2(x),则f_.f(x)sin xcos xcos2xsin 2xsin,fsincos.7若、为锐角,且满足cos ,cos(),则sin _. 【导学号:84352360】、为锐角,(0,)由cos ,求得sin ,由cos()求得sin(),sin sin()sin()cos cos()sin .8若2 018,则tan 2_.2 018tan 22 018.三、解答题9已知,sin .(1)求sin的值;(2)求cos的值. 【导学号:84352361】解(1)因为,sin ,所以cos .故sinsincos cossin .(2)由(1)知sin 22sin cos 2,cos 212sin2122,所以coscoscos 2sinsin 2.10已知函数f(x)sin x(2cos xsin x)cos2x.(1)求函数f(x)的最小正周期;(2)若,且f(),求sin 2的值解(1)因为f(x)sin x(2cos xsin x)cos2x,所以f(x)sin 2xsin2xcos2xsin 2xcos 2xsin,所以函数f(x)的最小正周期是.(2)f(),即sin,sin.因为,所以2,所以cos,所以sin 2sinsincos.冲A挑战练1若(4tan 1)(14tan )17,则tan()等于()A2B3 C4D5C由已知得,4(tan tan )16(1tan tan ),即4,tan()4.2在ABC中,若B45,则cos Asin C的取值范围是() 【导学号:84352362】A1,1 BC DBB45,AC135,C135A,cos Asin Ccos Asin(135A)cos Acos2Asin Acos A(sin 2Acos 2A1)sin(2A45)1sin(2A45),0A135,452A45315,1sin(2A45)1,cos Asin C.3已知向量a(4,5cos ),b(3,4tan ),若ab,则cos_.因为ab,所以435cos (4tan )0,解得sin .又因为,所以cos .cos 212sin2,sin 22sin cos ,于是coscos 2cossin 2sin.4函数f(x)的值域为_f(x)2sin x(1sin x)22,由1sin x0得1sin x1,所以f(x)的值域为.5已知函数f(x)a(cos2xsin xcos x)b.(1)当a0时,求f(x)的单调递增区间;(2)当a0且x时,f(x)的值域是3,4,求a,b的值. 【导学号:84352363】解f(x)aasin 2xbsinb.(1)2k2x2k,kZ,kxk(kZ),即x,kZ,故f(x)的单调递增区间为,kZ.(2)0x,2x,sin1,f(x)minab3,f(x)maxb4,a22,b4.
展开阅读全文