通信工程专业导论.doc

上传人:钟*** 文档编号:5345902 上传时间:2020-01-26 格式:DOC 页数:9 大小:28.50KB
返回 下载 相关 举报
通信工程专业导论.doc_第1页
第1页 / 共9页
通信工程专业导论.doc_第2页
第2页 / 共9页
通信工程专业导论.doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
通信工程专业导论结 课 论 文论文名称 通信的发展史 所在学院 信息工程学院 专 业 通信工程 班 级 学 号 姓 名 授课教师 时 间 2017/1/3 世界移动通信发展史关键词 通信的发展趋势 5G将采用华为力挺的Polar摘要 现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。1 .概述与总体趋势移动通信可以说从无线电通信发明之日就产生了。1897年,MG马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。第一阶段 从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到3040MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。第二阶段 从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。第三阶段 从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。第四阶段 从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT450移动通信网,并投入使用,频段为450MHz。这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。第五阶段 从 80年代中期开始。这是数字移动通信系统发展和成熟时期。以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。傅立叶变换最早是在19世纪由法国的数学家J.B. Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处. 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知。2.Polar2016年11月14日至18日期间,3GPP RAN1 #87会议在美国Reno召开,本次会议其中一项内容是决定5G短码块的信道编码方案,其中,提出了三种短码编码方案:Turbo码、LDPC码和Polar码。关于这三种编码方案之争,这已经是5G标准的第二次较量。在2016年10月14日葡萄牙里斯本举行的会议上,LDPC码战胜了Turbo码和Polar码,被采纳为5G eMBB场景的数据信道的长码块编码方案。在这个背景下,这一次关于短码块编码方案的争论更为激烈。因为LDPC码已经拿下一局,出于实施复杂性考虑,整个移动通信系统采用单一的编码方案更利于5G部署,比如,3G和4G采用的是Turbo码,估计会有更多人支持LDPC码。这样一来,主要由美国企业主导的LDPC码有可能一统5G天下,而华为等中国企业主导的Polar码将前功尽弃。由于抛弃Turbo码的呼声较大,在上次会议失利之后,可以说Turbo码基本大势已去,本次5G编码之争最终演变为Polar码和LDPC码之间的拳击争霸赛,一场中美拳击争霸赛。最终,经过连续熬夜的激战后,Polar码终于在5G核心标准上扳回一局,成为5G eMBB场景的控制信道编码方案。自此,经过两次激战,在5G eMBB场景上,Polar码和LDPC码二分天下,前者为信令信道编码方案,后者为数据信道编码方案。Polar码和LDPC码一起历史性的走进蜂窝移动通信系统,而在3G和4G时代陪伴我们多年的Turbo码再输一局,留下了落魄而孤寂的背影。这确实是一个令人振奋的消息,如果说用力挽狂澜来形容,我觉得并不为过。这对于主导Polar码的华为和中国企业绝对利好,毕竟,多年在Polar码上研发投入终于有了盼头。但是,我们看到有些媒体的报道,恕我直言,太过浮夸。1. 不是“拿下5G时代”在5G eMBB场景上,Polar为信令信道编码方案,LDPC码为数据信道编码方案,最多叫平分秋色。同时,后面还有很多路要走。我们在前文中提到的eMBB场景不过是5G应用的其中一个场景。3GPP定义了5G三大场景:eMBB,mMTC和URLLC,eMBB对应的是3D/超高清视频等大流量移动宽带业务,mMTC对应的是大规模物联网业务,而URLLC对应的是如无人驾驶、工业自动化等需要低时延高可靠连接的业务。本次采纳的编码方案是针对其中eMBB场景,后续还将决定URLLC场景下的信道编码方案,最后再决定mMTC场景(估计在2017年第一季度)。尽管此次采纳Polar码为后续标准话语权打下了坚实的基础,但革命还未成功,同志仍需努力。2 .Polar码不是华为的,LDPC也不是高通的这要从信道编码的历史说起。Turbo码是由法国科学家C.Berrou和A.Glavieux发明。从1993年开始,通信领域开始对其研究。随后,Turbo码被3G和4G标准采纳。LDPC码是由MIT的教授 Robert Gallager在1962年提出,这是最早提出的逼近香农极限的信道编码,不过,受限于当时环境,难以克服计算复杂性,随后被人遗忘。直到1996年才引起通信领域的关注。后来,LDPC码被WiFi标准采纳。Polar码是由土耳其比尔肯大学教授E. Arikan在2007年提出,2009年开始引起通信领域的关注。简而言之,信道编码是数学家们原创出理论,通信就是跟着数学家们跑,在他们的理论基础上不断研究试验,使之落地于实际应用。为什么有些公司力挺Polar码,有些公司力挺LDPC码?这就像下赌注,看中了某种编码技术,就开始对其研究,一旦赌赢了,那么我的研究成果就能快速落地应用,一旦输了,只能从头再来。比如,华为选择了Polar码,5G也选择了Polar码,这就意味着华为在5G领域更具影响力。当然,在研究中,一定也积累了不少专利。所以,尽管这次Polar码赢了,但个人以为,媒体们不能因为太过兴奋而忽略了数学家们的贡献,更不能张冠李戴,有些东西是没有国界的。3 .为何5G采纳了Polar码?这个小标题应该叫:5G为何采纳了Polar码和LDPC码?又为何放弃了Trubo码?先从什叫信道编码说起。当我们拿起手机刷朋友圈时,数据通过无线信号在手机和基站间传送。由于受到无线干扰、弱覆盖等原因影响,我们手机发送的数据和基站接收到数据有时会不一致,比如,我们手机发送的1 0 0 1 0,而基站接收到的却是1 1 0 1 0,为了纠错,移动通信系统就引入了信道编码技术。信道编码,简单的讲,就是我们在有K比特的数据块中插入冗余比特,形成一个更长的码块,这个码块的长度为N比特位,NK,N-K就是用于检测和纠错的冗余比特,编码率R就是K/N。一个好的信道编码,是在一定的编码率下,能无限接入信道容量的理论极限。在过去几十年里,出现了两种接近容量极限的信道编码技术:LDPC和Turbo码,分别被3G和4G通信标准和WiFi标准采纳。2007年,土耳其教授E. Arikan提出了Polar码,被称为是迄今发现的唯一一类能够达到香农限的编码方法。所以,这三种优秀的编码技术均进入5G编码标准的法眼,并引发了一场争夺赛。为何这场争夺赛这么激烈?都是KPI惹的祸。5G NR(New Radio)的KPI里,明确规定:峰值速率20Gbps、用户面时延0.5ms(URLLC)。这个KPI定的太高,在4G基础上提升了20倍。报告领导,不好完成。有多难呢?5G NR的下行峰值速率要求是20Gbps,由于手机(或基站)接收到的每一bit都要经过信道译码器,20Gbps就相当于译码器每秒钟要处理几十亿bit数据。举个例子,20 Gbps就意味着译码吞吐量T为20 Gbps,假设译码迭代次数I为10次,处理器的时钟频率F为500 MHz,那么,I *T /F = 10*20G/500M=400,也就是说需要400个处理器并行工作。(备注:译码器是信道编码最难实现的一环)这也是为何很多人选择放弃3G和4G时代使用的Turbo码的原因之一,因为4G的最大速率不过1Gbps,传统Turbo码通过迭代译码,本质上源于串行的内部结构,所以,有人认为Turbo遇上更高速率的5G时就遇到了瓶颈。比如LDPC译码器是基于并行的内部结构,这意味着译码的时候可以并行同时处理,不但能处理较大的数据量,还能减少处理时延。尽管可以采用外部并行的方式,但又带来了时延问题。对于时延,出于技术宅的本能,也请容许我再啰嗦一下。5G NR的URLLC应用场景要求用户面时延为0.5ms,这是4G 10ms的二十分之一。之所以要求这么高的时延,是因为我们在体验增强现实、远程控制和游戏等业务时,需要传送到云端处理,并实时传回,这一来回的过程时延一定要足够低,低到用户无法觉察到。另外,机器对时延比人类更敏感,对时延要求更高,尤其是5G的车联网、自动工厂和远程机器人等应用。空口0.5ms时延意味着物理层的时延不能超过50s,而物理层时延除了受译码影响,还受其它因素影响(比如同步),这就需要译码的处理时延一定要低于50s,越低越好。总得来说,这就好比春节的航班,人流太多,要把几亿中国人从南到北,从东向西转移一次,“数据量”太大,这就需要多开航班,并且加快航行速度。“航班公司”5G NR表示鸭梨山大,而信道编码表示压力更大,层层传递嘛。但是,这点压力还不够,5G表示还能抗。刚才我们讲了,3GPP定义了5G三大场景:eMBB,mMTC和URLLC,这些场景对应5G的AR、VR、车联网、大规模物联网、高清视频等等各种应用,较之3/4G只有语音和数据业务,5G可繁忙多了。这就对5G信道编码提出了更高要求,需支持更广泛的码块长度和更多的编码率。比如,短码块应用于物联网,长码块应用于高清视频,低编码率应用于基站分布稀疏的农村站点,高编码率应用于密集城区。如果大家都用同样的编码率,这就会造成数据比特浪费,进而浪费频谱资源,这叫编码的灵活性。另外,5G还得保障更高可靠性的通信。LTE对一般数据的空口误块率要求初始传输为10%,经过几次重传后,误块率如果低于1%即可。但是,5G要求误块率要降到十万分之一。这就意味着,10万个码块中,只允许信道译码器犯一次错,最多只能有一个码块不能纠错。综上,决定5G采用哪种编码方式的因素就是:译码吞吐量、时延、纠错能力、灵活性,还有实施复杂性、成熟度和后向兼容性等。比较一下三种编码的译码吞吐量、时延、纠错能力、灵活性和实施复杂性,谁更强的呢?小编查阅了最新的大量文献,结果是:被搞得晕头转向,一脸懵逼。这个问题太复杂了,公说公有理婆说婆有理。有人认为,Turbo码达到了瓶颈,无法处理20Gbps高速率,然而,有厂家证明,基于全并行设计的Turbo译码器的译码吞吐量能到21.9 Gbps,处理时延可达0.24s,这也能满足5G NR的20Gbps速率需求。比如,如果用译码器在译码每一bit时执行的Max,Min和Add操作的总次数来衡量计算复杂度,有人认为Polar码和LDPC码在计算复杂度上优于Turbo码。比如,有人说Turbo不够灵活,然而有人指出,LTE Turbo码的码块长度从40到6144,一共有188 种,可以支持不同的业务,而采用多个并行处理器来同时完成码块译码的Turbo码,能更灵活支持不同的码块长度小编试图从技术的角度去找到5G选择Polar码或者LDPC码的理由,然而,能力有限,把自己搞得灰头土脸。那么,我们从成熟度和向后兼容性方面看吧。Turbo码被3/4G标准采用,LDPC被WiFi标准采用,而Polar码出现较晚,在5G之前还没有任何标准采用。从这方面讲,Polar码的成熟度较低。然而,华为表示不服,5G编码标准之争前,海外通信圈就有一篇文章疯传,华为表示,采用Polar码实现了5G速率达到27Gbps,表示满足5G需求没问题。至于向后兼容性。5G NR是一种全新的无线技术,是更新换代,不是像2G2.5G或4G4.5G那样,现网升级即可,这是要运营商买新基站设备的,所以,其实不用考虑后向兼容性。不过,对于终端就是另外一回事了。现在的4G手机支持2G和3G,同样,以后5G手机也要支持3G和4G。3G和4G采用Turbo码,如果5G也采用LDPC或Polar码,这就意味着手机要采用两套硬件设计,而译码器是整个基带处理器的重要组成部分,占据了近72%的基带处理硬件资源和功耗,这可能会导致5G终端成本稍高一点,也可能会稍微拉长一点5G商用化的时间。但是,有句老话叫磨刀不误砍柴工。如果这一编码方案足够优秀,极具潜力,那么,5G晚到一点又有什么关系呢,无非是为了更好的体验多花一点时间而已。此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好最新可编辑word文档
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!