2019高考数学三轮冲刺 大题提分 大题精做13 函数与导数:参数与分类讨论 理.docx

上传人:xt****7 文档编号:4600085 上传时间:2020-01-10 格式:DOCX 页数:7 大小:16.57KB
返回 下载 相关 举报
2019高考数学三轮冲刺 大题提分 大题精做13 函数与导数:参数与分类讨论 理.docx_第1页
第1页 / 共7页
2019高考数学三轮冲刺 大题提分 大题精做13 函数与导数:参数与分类讨论 理.docx_第2页
第2页 / 共7页
2019高考数学三轮冲刺 大题提分 大题精做13 函数与导数:参数与分类讨论 理.docx_第3页
第3页 / 共7页
点击查看更多>>
资源描述
大题精做13 函数与导数:参数与分类讨论2019揭阳毕业已知函数(,)(1)讨论函数的单调性;(2)当时,求的取值范围【答案】(1)见解析;(2)或【解析】(1),若,当时,在上单调递增;当时,在上单调递减若,当时,在上单调递减;当时,在上单调递增当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增(2),当时,上不等式成立,满足题设条件;当时,等价于,设,则,设,则,在上单调递减,得当,即时,得,在上单调递减,得,满足题设条件;当,即时,而,又单调递减,当,得,在上单调递增,得,不满足题设条件;综上所述,或12019周口调研已知函数(1)求函数的单调区间;(2)若对任意,函数的图像不在轴上方,求的取值范围22019济南期末已知函数(1)若曲线在点处切线的斜率为1,求实数的值;(2)当时,恒成立,求实数的取值范围32019漳州一模已知函数(1)求在上的最值;(2)设,若当,且时,求整数的最小值1【答案】(1)见解析;(2)【解析】(1)函数的定义域为,当时,恒成立,函数的单调递增区间为;当时,由,得或(舍去),则由,得;由,得,所以的单调递增区间为,单调递减区间为(2)对任意,函数的图像不在轴上方,等价于对任意,都有恒成立,即在上由(1)知,当时,在上是增函数,又,不合题意;当时,在处取得极大值也是最大值,所以令,所以在上,是减函数又,所以要使得,须,即故的取值范围为2【答案】(1);(2)【解析】(1),因为,所以(2),设,设,设,注意到,()当时,在上恒成立,所以在上恒成立,所以在上是增函数,所以,所以在上恒成立,所以在上是增函数,所以在上恒成立,符合题意;()当时,所以,使得,当时,所以,所以在上是减函数,所以在上是减函数,所以,所以在上是减函数,所以,不符合题意;综上所述3【答案】(1)详见解析;(2)2【解析】解法一:(1),当时,因为,所以在上单调递减,所以,无最小值当时,令,解得,在上单调递减;令,解得,在上单调递增;所以,无最大值当时,因为,等号仅在,时成立,所以在上单调递增,所以,无最大值综上,当时,无最小值;当时,无最大值;当时,无最大值(2),当时,因为,由(1)知,所以(当时等号成立),所以当时,因为,所以,所以,令,已知化为在上恒成立,因为,令,则,在上单调递减,又因为,所以存在使得,当时,在上单调递增;当时,在上单调递减;所以,因为,所以,所以,所以的最小整数值为2解法二:(1)同解法一(2),当时,因为,由(1)知,所以,所以,当时,因为,所以,令,已知化为在上恒成立,因为在上,所以,下面证明,即证在上恒成立,令,则,令,得,当时,在区间上递减;当时,在区间上递增,所以,且,所以当时,即由得当时,所以的最小整数值为2
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!