陕西省石泉县高中数学 第一章 推理与证明 1.3 反证法(二)教案 北师大版选修2-2.doc

上传人:xt****7 文档编号:3917417 上传时间:2019-12-29 格式:DOC 页数:3 大小:29.50KB
返回 下载 相关 举报
陕西省石泉县高中数学 第一章 推理与证明 1.3 反证法(二)教案 北师大版选修2-2.doc_第1页
第1页 / 共3页
陕西省石泉县高中数学 第一章 推理与证明 1.3 反证法(二)教案 北师大版选修2-2.doc_第2页
第2页 / 共3页
陕西省石泉县高中数学 第一章 推理与证明 1.3 反证法(二)教案 北师大版选修2-2.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
3 反证法(二)课标要求结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。三维目标(1)知识与技能:结合已学过的数学实例,了解间接证明的方法反证法;了解反证法的思考过程、特点(2)过程与方法:能够运用反证法证明数学问题(3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯学情分析前面我们学习了两种直接证明问题的方法综合法和分析法以前的学习中,学生已经接触过用反证法证明数学命题,本节课进一步熟悉运用反证法证明某些直接证明较难解决的数学问题。教学重难点【教学重点】:了解反证法的思考过程、特点;运用反证法证明数学问题。【教学难点】:运用反证法证明数学问题。提炼的课题反证法的思考过程、特点。教学手段运用教学资源选择探析归纳,讲练结合教 学 过 程环节学生要解决的问题或任务教师教与学生学设计意图一、提出问题二、反证法定义问题1、任找370个人,他们中生日有没有相同的呢?问题2、将9个球分别染成红色或白色,无论怎样染,至少有5个球是同色的,你能证明这个结论吗?思考:通过以上几个练习,大家已经初步体会到反证法的作用,你能不能总结一下应用反证法的概念及其步骤? 例1、已知直线和平面,如果,且,求证。解析:让学生理解反证法的严密性和合理性;证明:因为, 所以经过直线a , b 确定一个平面。因为,而,所以 与是两个不同的平面因为,且,所以. 下面用反证法证明直线a与平面没有公共点假设直线a 与平面有公共点,则,即点是直线 a 与b的公共点,这与矛盾所以 .点评:用反证法的基本步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等利1:反证法的概念:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法2:反证法的基本步骤: 1):假设命题结论不成立,即假设结论的反面成立;2):从这个假设出发,经过推理论证,得出矛盾;3):从矛盾判定假设不正确,从而肯定命题的结论正确.3:应用反证法的情形:1):直接证明困难;2):需分成很多类进行讨论; 3):结论为“至少”、“至多”、“有无穷多个”类命题; 4):结论为 “唯一”类命题;例2、求证:不是有理数解析:直接证明一个数是无理数比较困难,我们采用反证法假设不是无理数,那么它就是有理数我们知道,任一有理数都可以写成形如(互质, ”的形式下面我们看看能否由此推出矛盾证明:假设不是无理数,那么它就是有理数于是,存在互质的正整数,使得,从而有, 因此,所以 m 为偶数于是可设 ( k 是正整数),从而有,即所以n也为偶数这与 m , n 互质矛盾!由上述矛盾可知假设错误,从而是无理数 从实际生活的例子出发,使学生对反证法的基本方法和步骤有一个更深刻的认识。直观了解反证法的证明过程。否定结论,推出矛盾。提醒学生:使用反证法进行证明的关键是在正确的推理下得出矛盾。这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等。进上步熟悉反证法的证题思路及步骤。引导学生结合思考题和例题归纳出反证法所适用的题型特点和一般步骤。培养学生的归纳
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!