资源描述
闭区间上连续函数的性质,闭区间上的连续函数有着十分优良的性质,这些性质在函数的理论分析、研究中有着重大的价值,起着十分重要的作用。下面我们就不加证明地给出这些结论,好在这些结论在几何意义是比较明显的。,一、最大值和最小值定理,定义:,例如,定理1(最大值和最小值定理)在闭区间上连续的函数一定有最大值和最小值.,注意:1.若区间是开区间,定理不一定成立;2.若区间内有间断点,定理不一定成立.,定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界.,证,二、介值定理,定义:,几何解释:,证,由零点定理,几何解释:,例1,证,由零点定理,推论在闭区间上连续的函数必取得介于最大值与最小值之间的任何值.,说明:,内必有方程的根;,取,的中点,内必有方程的根;,可用此法求近似根.,二分法,则,则,例2,证,由零点定理,例3,证,由零点定理知,总之,注,方程f(x)=0的根,函数f(x)的零点,有关闭区间上连续函数命题的证明方法,10直接法:先利用最值定理,再利用介值定理,20间接法(辅助函数法):先作辅助函数,再利用零点定理,辅助函数的作法,(1)将结论中的(或x0或c)改写成x,(2)移项使右边为0,令左边的式子为F(x)则F(x)即为所求,区间一般在题设中或要证明的结论中已经给出,余下只须验证F(x)在所讨论的区间上连续,再比较一下两个端点处的函数值的符号,或指出要证的值介于F(x)在所论闭区间上的最大值与最小值之间。,1.任给一张面积为A的纸片(如图),证明必可将它,思考与练习,一刀剪为面积相等的两片.,提示:,建立坐标系如图.,则面积函数,因,故由介值定理可知:,思考题,思考题解答,且,思考题,下述命题是否正确?,思考题解答,不正确.,例函数,
展开阅读全文