资源描述
2019-2020年八年级数学 一次函数的图象教案一、教学目标1、理解函数图象的概念。2、经历作图过程,初步了解作函数图象的一般步骤。3、理解一次函数的代数表达式与图象之间的对应关系。4、能较熟练作出一次函数的图象。二、能力目标1、已知解析式作函数的图象,培养学生数形结合的意识和能力。2、在探究活动中发展学生的合作意识和能力。三、情感目标1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。2、加强新旧知识的联系,促进学生新的认知结构的建构。四、教学重点1、能熟练地作出一次函数的图象。2、归纳作函数图象的一般步骤。3、理解一次函数的代数表达式与图象之间的对应关系。五、教学过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。在上新课前请同学们回意一下正比例涵数图像的画法有哪些?步骤怎样?2、讲授新课(1)复习练习:画出涵数y= -6x的图像(用两种方法画,叫两个学生板演)(2)问:如何画一次涵数y= -6x+5的图像呢?由学生自己讨论得出一次函数图象的画法,教师归纳总结并板演(如下图所示)观察比较上面两个个函数的图象的相同点与不同点.由学生分组组讨论,并个别总结,教师归纳板书如下:这两个函数的图象形状都是_,并且倾斜程度_.函数y= -6x的图象经过原点,函数y= -6x+5的图象与 轴交与点_,即它可以看作由直线y= -6x 向_平移_个单位长度而得到.想一想:比较两个函数解析式,试解释这是为什么?猜想:联系上例,猜想函数 y=kx+b的图象是什么形状,它与直线y=kx 有什么关系?讨论归纳得出:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b个单位长度而得到(当b0时,向上平移;当b0时,k的值越大,函数图象与x轴正方向所成的锐角越大。(4)在正比例函数y=kx的图象中,当k0时,y的值随x值的增大而增大;当k0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。6、想一想(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x的函数值比y=2x+6的函数值增加得快)(2)直线y=-x与y=-x+6的位置关系如何?(平行,一次函数k相同就平行)(3)直线y=2x+6与y=-x+6的位置关系如何?(相交)7、课堂练习1、下列一次函数中,y的值随x值的增大而增大的是( )A、y=-5x+3 B、y=-x-7 C、y=- D、y=-+42、下列一次函数中,y的值随x值的增大而减小的是( )A、y=x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6六、课后小结1、正比例函数y=kx的图象的特点。2、一次函数y=kx+b的图象的特点。七、课堂作业
展开阅读全文