2019-2020年高考数学一轮复习 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc

上传人:tian****1990 文档编号:2665427 上传时间:2019-11-28 格式:DOC 页数:24 大小:788.50KB
返回 下载 相关 举报
2019-2020年高考数学一轮复习 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc_第1页
第1页 / 共24页
2019-2020年高考数学一轮复习 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc_第2页
第2页 / 共24页
2019-2020年高考数学一轮复习 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc_第3页
第3页 / 共24页
点击查看更多>>
资源描述
2019-2020年高考数学一轮复习 第十五章 圆锥曲线与方程 15.1 椭圆讲义(1)设椭圆的半焦距为c.因为椭圆E的离心率为,两准线之间的距离为8,所以=,=8,解得a=2,c=1,于是b=,因此椭圆E的标准方程是+=1.(2)由(1)知,F1(-1,0),F2(1,0).设P(x0,y0),因为P为第一象限的点,故x00,y00.当x0=1时,l2与l1相交于F1,与题设不符.当x01时,直线PF1的斜率为,直线PF2的斜率为.因为l1PF1,l2PF2,所以直线l1的斜率为-,直线l2的斜率为-,从而直线l1的方程:y=-(x+1),直线l2的方程:y=-(x-1).由,解得x=-x0,y=,所以Q.因为点Q在椭圆上,由对称性,得=y0,即-=1或+=1.又P在椭圆E上,故+=1.由解得x0=,y0=;无解.因此点P的坐标为.考纲解读考点内容解读要求五年高考统计常考题型预测热度xxxxxxxxxx1.椭圆的定义和标准方程椭圆的标准方程B18题16分填空题解答题2.椭圆的性质椭圆的性质及应用B12题5分17题14分10题5分填空题解答题分析解读椭圆的标准方程和几何性质是江苏高考的必考内容,重点考查椭圆方程的求解,椭圆离心率的求法,在解答题中对运算化简能力的要求比较高.五年高考考点一椭圆的定义和标准方程1.(xx大纲全国改编,6,5分)已知椭圆C:+=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若AF1B的周长为4,则C的方程为.答案+=12.(xx福建改编,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是.答案63.(xx课标全国理改编,10,5分)已知椭圆E:+=1(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为.答案+=14.(xx课标全国,20,12分)已知椭圆C:+=1(ab0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)+(m-1)=0.解得k=-.当且仅当m-1时,0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).5.(xx天津文,20,14分)已知椭圆+=1(ab0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),EFA的面积为.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.解析(1)设椭圆的离心率为e.由已知,可得(c+a)c=.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0e0),则直线FP的斜率为.由(1)知a=2c,可得直线AE的方程为+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=,y=,即点Q的坐标为.由已知|FQ|=c,有+=,整理得3m2-4m=0,所以m=,即直线FP的斜率为.(ii)由a=2c,可得b=c,故椭圆方程可以表示为+=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去),或x=c.因此可得点P,进而可得|FP|=,所以|PQ|=|FP|-|FQ|=-=c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QNFP,所以|QN|=|FQ|tanQFN=,所以FQN的面积为|FQ|QN|=,同理FPM的面积等于,由四边形PQNM的面积为3c,得-=3c,整理得c2=2c,又由c0,得c=2.所以,椭圆的方程为+=1.6.(xx山东,21,14分)已知椭圆C:+=1(ab0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k,证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=2,所以a=2,b=.所以椭圆C的方程为+=1.(2)(i)证明:设P(x0,y0)(x00,y00).由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k=,直线QM的斜率k=-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m-m=,所以kAB=.由m0,x00,可知k0,所以6k+2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.7.(xx北京,19,14分)已知椭圆C:+=1过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:四边形ABNM的面积为定值.解析(1)由题意得,a=2,b=1.所以椭圆C的方程为+y2=1.(3分)又c=,所以离心率e=.(5分)(2)设P(x0,y0)(x00,y0b0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.解析(1)由题意,得=且c+=3,解得a=,c=1,则b=1,所以椭圆的标准方程为+y2=1.(2)当ABx轴时,AB=,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将直线AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=,C的坐标为,且AB=.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k0,故直线PC的方程为y+=-,则P点的坐标为,从而PC=.因为PC=2AB,所以=,解得k=1.此时直线AB的方程为y=x-1或y=-x+1.9.(xx安徽,20,13分)设椭圆E的方程为+=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为,因为kOM=,所以=.所以a=b,c=2b.故e=.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.因为点T在直线AB上,且kNSkAB=-1,所以有解得b=3.所以a=3,故椭圆E的方程为+=1.10.(xx课标,20,12分)已知点A(0,-2),椭圆E:+=1(ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当lx轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当=16(4k2-3)0,即k2时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以OPQ的面积SOPQ=d|PQ|=.设=t,则t0,SOPQ=.因为t+4,当且仅当t=2,即k=时等号成立,且满足0,所以,当OPQ的面积最大时,l的方程为y=x-2或y=-x-2.教师用书专用(1117)11.(xx天津,19,14分)设椭圆+=1(a)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOA=MAO,求直线l的斜率.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得xB=,从而yB=.由(1)知,F(1,0),设H(0,yH),有=(-1,yH),=.由BFHF,得=0,所以+=0,解得yH=.因此直线MH的方程为y=-x+.设M(xM,yM),由方程组消去y,解得xM=.在MAO中,MOA=MAO|MA|=|MO|,即(xM-2)2+=+,化简得xM=1,即=1,解得k=-,或k=.所以,直线l的斜率为-或.12.(xx福建,18,13分)已知椭圆E:+=1(ab0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(mR)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.解析解法一:(1)由已知得解得所以椭圆E的方程为+=1.(2)设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而y0=.所以|GH|2=+=+=(m2+1)+my0+.=(1+m2)(-y1y2),故|GH|2-=my0+(1+m2)y1y2+=-+=0,所以|GH|.故点G在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=,=.由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而=+y1y2=+y1y2=(m2+1)y1y2+m(y1+y2)+=+=0,所以cos0.又,不共线,所以AGB为锐角.故点G在以AB为直径的圆外.13.(xx山东,20,13分)平面直角坐标系xOy中,已知椭圆C:+=1(ab0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=,由题意知Q(-x0,-y0).因为+=1,又+=1,即=1,所以=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由0,可得m24+16k2.则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以OAB的面积S=|m|x1-x2|=2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由0,可得m21+4k2.由可知0b0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连结PF1,PF2.设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k0,试证明+为定值,并求出这个定值.解析(1)由于c2=a2-b2,将x=-c代入椭圆方程+=1,得y=,由题意知=1,即a=2b2.因为e=,所以a=2,b=1.所以椭圆C的方程为+y2=1.(2)设P(x0,y0)(y00).因为F1(-,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x-(x0+)y+y0=0,:y0x-(x0-)y-y0=0.由题意知= .由于点P在椭圆上,所以+=1.所以= .因为-m,-2x02,所以=.所以m=x0.因此-mb0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程.解析(1)由题意得所以椭圆C1的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为y=kx-1.又圆C2:x2+y2=4,故点O到直线l1的距离d=,所以|AB|=2=2.又l2l1,故直线l2的方程为x+ky+k=0.由消去y,整理得(4+k2)x2+8kx=0,故x0=-.所以|PD|=.设ABD的面积为S,则S=|AB|PD|=,所以S=,当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.考点二椭圆的性质1.(xx浙江改编,2,5分)椭圆+=1的离心率是.答案2.(xx课标全国文改编,12,5分)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是.答案(0,19,+)3.(xx江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是.答案4.(xx江苏,12,5分)在平面直角坐标系xOy中,椭圆C的标准方程为+=1(ab0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2.若d2=d1,则椭圆C的离心率为.答案5.(xx山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(ab0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|AB|=23,M的半径为|MC|,OS,OT是M的两条切线,切点分别为S,T.求SOT的最大值,并求取得最大值时直线l的斜率.解析(1)由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.由得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t1,(0,1),因此=1,当且仅当=,即t=2时等号成立,此时k1=,所以sin,因此,所以SOT的最大值为.综上所述:SOT的最大值为,取得最大值时直线l的斜率k1=.6.(xx北京文,19,14分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.解析(1)设椭圆C的方程为+=1(ab0).由题意得解得c=.所以b2=a2-c2=1.所以椭圆C的方程为+y2=1.(2)证明:设M(m,n),则D(m,0),N(m,-n).由题设知m2,且n0.直线AM的斜率kAM=,故直线DE的斜率kDE=-.所以直线DE的方程为y=-(x-m).直线BN的方程为y=(x-2).由解得点E的纵坐标yE=-.由点M在椭圆C上,得4-m2=4n2.所以yE=-n.又SBDE=|BD|yE|=|BD|n|,SBDN=|BD|n|,所以BDE与BDN的面积之比为45.7.(xx浙江理,19,15分)如图,设椭圆+y2=1(a1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,由得(1+a2k2)x2+2a2kx=0,故x1=0,x2=-.因此|AP|=|x1-x2|=.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k20,k1k2.由(1)知,|AP|=,|AQ|=,故=,所以(-)1+a2(2-a2)=0.由于k1k2,k1,k20得1+a2(2-a2)=0,因此=1+a2(a2-2),因为式关于k1,k2的方程有解的充要条件是1+a2(a2-2)1,所以a.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a,由e=得,所求离心率的取值范围为0b0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQM=ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(xM,0).因为m0,所以-1nb0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解析(1)由椭圆的定义,有2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1PF2,得2c=|F1F2|=2,即c=,从而b=1.故所求椭圆的标准方程为+y2=1.(2)解法一:连结F1Q,如图,设点P(x0,y0)在椭圆上,且PF1PF2,则+=1,+=c2,求得x0=,y0=.由|PF1|=|PQ|PF2|得x00,从而|PF1|2=+=2(a2-b2)+2a=(a+)2.由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1PF2,|PF1|=|PQ|,知|QF1|=|PF1|.因此(2+)|PF1|=4a,即(2+)(a+)=4a,于是(2+)(1+)=4,解得e=-.解法二:连结F1Q,由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1PQ,|PF1|=|PQ|,知|QF1|=|PF1|,因此,4a-2|PF1|=|PF1|,得|PF1|=2(2-)a,从而|PF2|=2a-|PF1|=2a-2(2-)a=2(-1)a.由PF1PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=-.10.(xx江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆+=1(ab0)的左、右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF2=,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值.解析设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2=a.又BF2=,故a=.因为点C在椭圆上,所以+=1,解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1CAB,所以=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.教师用书专用(1121)11.(xx课标全国改编,5,5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为.答案12.(xx山东改编,10,5分)已知ab0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为.答案xy=013.(xx课标全国改编,12,5分)已知O为坐标原点,F是椭圆C:+=1(ab0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为.答案14.(xx湖北改编,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为.答案15.(xx福建理,14,4分)椭圆:+=1(ab0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆的一个交点M满足MF1F2=2MF2F1,则该椭圆的离心率等于.答案-116.(xx浙江,19,15分)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求AOB面积的最大值(O为坐标原点).解析(1)由题意知m0,可设直线AB的方程为y=-x+b.由消去y,得x2-x+b2-1=0.因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以=-2b2+2+0,将AB中点M代入直线方程y=mx+,解得b=-.由得m.(2)令t=,则|AB|=,且O到直线AB的距离为d=.设AOB的面积为S(t),所以S(t)=|AB|d=.当且仅当t2=时,等号成立.故AOB面积的最大值为.17.(xx课标,20,12分)设F1,F2分别是椭圆C:+=1(ab0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据c=及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,得原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1b0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=,由d=c,得a=2b=2,解得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.依题意,得圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|=.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.依题意,得点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1x2,所以AB的斜率kAB=.因此直线AB的方程为y=(x+2)+1,代入得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|=.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.19.(xx湖南,20,13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(ab0)的一个焦点,C1与C2的公共弦的长为2.(1)求C2的方程;(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(i)若|AC|=|BD|,求直线l的斜率;(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,MFD总是钝角三角形.解析(1)由C1:x2=4y知其焦点F的坐标为(0,1).因为F也是椭圆C2的一个焦点,所以a2-b2=1.又C1与C2的公共弦的长为2,C1与C2都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为,所以+=1.联立,得a2=9,b2=8.故C2的方程为+=1.(2)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(i)因与同向,且|AC|=|BD|,所以=,从而x3-x1=x4-x2,即x1-x2=x3-x4,于是(x1+x2)2-4x1x2=(x3+x4)2-4x3x4.设直线l的斜率为k,则l的方程为y=kx+1.由得x2-4kx-4=0.而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=-4.由得(9+8k2)x2+16kx-64=0.而x3,x4是这个方程的两根,所以x3+x4=-,x3x4=-.将,代入,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=169,解得k=,即直线l的斜率为.(ii)由x2=4y得y=,所以C1在点A处的切线方程为y-y1=(x-x1),即y=-.令y=0,得x=,即M,所以=.而=(x1,y1-1),于是=-y1+1=+10,因此AFM是锐角,从而MFD=180-AFM是钝角.故直线l绕点F旋转时,MFD总是钝角三角形.20.(xx天津,18,13分)设椭圆+=1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有=0,即(x0+c)c+y0c=0.又c0,故有x0+y0+c=0.又因为点P在椭圆上,故+=1.由和可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1=-c,y1=c,进而圆的半径r=c.设直线l的斜率为k,依题意,直线l的方程为y=kx.由l与圆相切,可得=r,即=c,整理得k2-8k+1=0,解得k=4.所以直线l的斜率为4+或4-.21.(xx辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:-=1过点P且离心率为.(1)求C1的方程;(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.解析(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=.由+=42x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).由题意知解得a2=1,b2=2,故C1的方程为x2-=1.(2)由(1)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为+=1,其中b10.由P(,)在C2上,得+=1,解得=3,因此C2的方程为+=1.显然,l不是直线y=0.设l的方程为x=my+,点A(x1,y1),B(x2,y2),由得(m2+2)y2+2my-3=0,又y1,y2是方程的根,因此由x1=my1+,x2=my2+,得因=(-x1,-y1),=(-x2,-y2),故由题意知=0,所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0.将,代入式整理得2m2-2m+4-11=0,解得m=-1或m=-+1.因此直线l的方程为x-y-=0或x+y-=0.三年模拟A组xx模拟基础题组考点一椭圆的定义和标准方程1.(xx江苏扬州中学高三月考)设F1、F2是椭圆+y2=1的两个焦点,点P在椭圆上,且满足F1PF2=,则点P到x轴的距离为.答案2.(苏教选21,二,1,2,变式)椭圆+=1的焦距为4,则m=.答案4或83.(苏教选21,二,2,4,变式)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线与椭圆C交于A,B两点,且AB=3,则C的方程为.答案+=14.(xx江苏南通中学高三阶段练习)已知椭圆C:+=1(ab0)的离心率为,点B是椭圆C的上顶点,点Q在椭圆上(异于B点).(1)若椭圆C过点,求椭圆C的方程;(2)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明;存在kR,=.解析(1)椭圆的离心率e=,则a2=2b2,将代入+=1得+=1,解得b2=2,所以a2=4,于是椭圆C的方程为+=1.(2)证明:由a2=2b2得椭圆方程为+=1,将直线方程y=kx+b代入椭圆方程,整理得(1+2k2)x2+4kbx=0,解得xP=-,yP=,则BP=.因为以PQ为直径的圆过点B,所以BPBQ,将BP=中的k用-代换得BQ=,由=得=,当k0时,化简得2k3-2k2+4k-1=0,设f(k)=2k3-2k2+4k-1(k0),f=-0,函数f(k)=2k3-2k2+4k-1(k0)存在零点,存在kR,使得=.5.(xx江苏徐州铜山中学期中)如图,在平面直角坐标系xOy中,椭圆E:+=1(ab0)的左顶点为A(-2,0),离心率为,过点A的直线l与椭圆E交于另一点B,点C为y轴上的一点.(1)求椭圆E的标准方程;(2)若ABC是以点C为直角顶点的等腰直角三角形,求直线l的方程.解析(1)由题意可得从而有b2=a2-c2=3,所以椭圆E的标准方程为+=1.(2)易知,直线l的斜率存在,设直线l的方程为y=k(x+2),代入+=1,得(3+4k2)x2+16k2x+16k2-12=0,因为x=-2为该方程的一个根,所以B,设C(0,y0),由kACkBC=-1,得=-1,即(3+4k2)-12ky0+16k2-12=0,(*)由AC=BC,即AC2=BC2,得4+=+,即4=+-y0,即4(3+4k2)2=(6-8k2)2+144k2-24k(3+4k2)y0,所以k=0或y0=,当k=0时,直线l的方程为y=0,此时,当y0=2时,符合题意.当y0=时,代入(*)得16k4+7k2-9=0,解得k=,此时直线l的方程为y=(x+2).综上,直线l的方程为y=0或y=(x+2).6.(xx苏州暑期调研,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(ab0)的左、右焦点分别为F1,F2,点P(3,1)在椭圆上,PF1F2的面积为2.(1) 求椭圆C的标准方程;若Q为椭圆C上一点,且F1QF2=,求QF1QF2的值;(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.解析(1)由条件可知+=1,c=2.又a2=b2+c2,所以a2=12,b2=4,所以椭圆的标准方程为+=1.易知所以QF1QF2=.(2)设A(x1,y1),B(x2,y2),由得4x2+6kx+3k2-12=0,x1+x2=-,x1x2=,y1y2=,因为以AB为直径的圆经过坐标原点,则=x1x2+y1y2=k2-6=0,解得k=,此时=1200,满足条件,因此k=.7.(xx江苏徐州期末调研,18)如图,在平面直角坐标系xOy中,已知椭圆C:+=1(ab0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求FMN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求APQ的面积的最大值.解析(1)由题意,得 解得 则b=2,所以椭圆C的标准方程为+=1.(2)由题意可设直线PA的方程为y=k(x+4),k0,则M(0,4k),所以直线FN的方程为y=(x-2),则N.(i)当直线PA的斜率为,即k=时,M(0,2),N(0,-4),易知F(2,0),因为MFFN,所以外接圆的圆心为(0,-1),半径为3,所以FMN的外接圆的方程为x2+(y+1)2=9.(ii)由 消去y并整理得,(1+2k2)x2+16k2x+32k2-16=0,解得x1=-4,x2=,所以P,直线AN的方程为y=-(x+4),Q,所以P,Q关于原点对称,即直线PQ过原点.所以APQ的面积S=OA(yP-yQ)=2=8,当且仅当2k=,即k=时,取“=”.所以APQ的面积的最大值为8.8.(xx江苏南京,盐城一模,17)在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆E:+=1(0b2)的焦点.(1)求椭圆E的标准方程;(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(-1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2-2k2=1时,求k1k2的值.解析(1)因0bb0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过点P作圆的切线PA,PB,切点为A,B使得BPA=,则椭圆C1的离心率的取值范围是.答案10.(xx江苏南京高淳区质检,12)已知椭圆E:+=1(ab0)的左、右焦点分别为F1,F2,焦距为2c,若椭圆E与直线y=(x+c)的一个交点M满足MF1F2=2MF2F1,则椭圆的离心率为.答案-111.(苏教选21,二,2,10,变式)已知F1(-c,0),F2(c,0)为椭圆+=1(ab0)的两个焦点,P为椭圆上一点,且=c2,则此椭圆离心率的取值范围是.答案B组xx模拟提升题组(满分:45分时间:20分钟)解答题(共45分)1.(xx江苏扬州中学期中,19)已知椭圆C:+=1(ab0)的右焦点为F,过点F的直线交y轴于点N,交椭圆C于点A、P(P在第一象限),过点P作y轴的垂线交椭圆C于另外一点Q.若=2.(1)设直线PF、QF的斜率分别为k、k,求证:为定值; (2)若=,且APQ的面积为,求椭圆C的方程.解析(1)证明:设F(c,0),则c2=a2-b2,设P(x0,y0),则Q(-x0,y0).所以k=,k=,因为=2,所以c=2(x0-c),即x0=c,k=,k=,k=-5k,即=-5,为定值.(2)若=,所以=3,A,因为点A、P在椭圆C上,则9-得:=8,解得:=,则=,代入得:=,=,因为SAPQ=3c4y0=6cy0=,所以c2=,则c2=4,所以a2=10,b2=6,所以椭圆C的方程为+=1.2.(xx南通、泰州期末)如图,在平面直角坐标系xOy中,已知椭圆+=1(ab0)的离心率为,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P为椭圆上的一点,过
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!