五年级数学 奥数练习17 变换和操作(B).doc

上传人:max****ui 文档编号:2528572 上传时间:2019-11-27 格式:DOC 页数:4 大小:41.50KB
返回 下载 相关 举报
五年级数学 奥数练习17 变换和操作(B).doc_第1页
第1页 / 共4页
五年级数学 奥数练习17 变换和操作(B).doc_第2页
第2页 / 共4页
五年级数学 奥数练习17 变换和操作(B).doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
变换和操作(B)年级 班 姓名 得分 一、填空题 1对于324和612,把第一个数加上3,同时把第二个数减3,这算一次操作,操作_次后两个数相等.2. 对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3,1998如此操作,最后得到的一位数是7的数一共有_个.3. 在1,2,3,4,5,59,60这60个数中,第一次从左向右划去奇数位上的数;第二次在剩下的数中,再从左向右划去奇数位上的数;如此继续下去,最后剩下一个数时,这个数是_.4. 把写有1,2,3,,25的25张卡片按顺序叠齐,写有1的卡片放在最上面,下面进行这样的操作:把第一张卡片放到最下面,把第二张卡片扔掉;再把第一张卡片放到最下面,把第二张卡片扔掉;按同样的方法,反复进行多次操作,当剩下最后一张卡片时,卡片上写的是_.5. 一副扑克共54张,最上面的一张是红桃K.如果每次把最上面的4张牌,移到最下面而不改变它们的顺序及朝向,那么,至少经过_次移动,红桃K才会出现在最上面.6. 写出一个自然数A,把A的十位数字与百位数字相加,再乘以个位数字,把所得之积的个位数字续写在A的末尾,称为一次操作.如果开始时A=1999,对1999进行一次操作得到19992,再对19992进行一次操作得到199926,如此进行下去直到得出一个1999位数为止,这个1999位数的各位数字之和是_.7. 黑板上写有1987个数:1,2,3,,1986,1987.任意擦去若干个数,并添上被擦去的这些数的和被7除的余数,称为一个操作.如果经过若干次这种操作,黑板上只剩下了两个数,一个是987,那么,另一个数是_.8.下图中有5个围棋子围成一圈.现在将同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,然后将原来的5个拿掉,剩下新放入的5个子中最多能有_个黑子.9. 在圆周上写上数1,2,4然后在每两个相邻的数之间写上它们的和(于是共得到6个数:1,3,2,6,4,5)再重复这一过程5次,圆周上共出现192个数,则所有这些数的和是_.10. 在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作,那么最多经过_次操作,黑板上就会出现2.二、解答题11甲盒中放有1993个白球和1994个黑球,乙盒中放有足够多个黑球.现在每次从甲盒中任取两球放在外面,但当被取出的两球同色时,需从乙盒中取出一个黑球放入甲盒;当被取出的两球异色时,便将其中的白球再放回甲盒,这样经过3985次取、放之后,甲盒中剩下几个球?各是什么颜色的球?0010023412如图是一个圆盘,中心轴固定在黑板上,开始时,圆盘上每个数字所对应的黑板处均写着0,然后转动圆盘,每次可以转动的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置.将圆盘上的数加到黑板上对应位置的数上,问:经过若干次后,黑板上的四个数是否可能都是1999?13. 有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.12111098765432112111098765432114. 如图,圆周上顺次排列着1、2、3、12这十二个数,我们规定:相邻的四个数a1、a2、a3、a4顺序颠倒为a4、a3、a2、a1,称为一次“变换”(如:1、2、3、4变为4、3、2、1,又如:11、12、1、2变为2、1、12、11).能否经过有限次“变换”,将十二个数的顺序变为9、1、2、3、8、10、11、12(如图)?请说明理由.答 案 1. 48每操作一次,两个数的差减少6,经(612-324)6=48次操作后两个数相等.2. 222由于操作后所得到的数与原数被9除所得的余数相同,因此操作最后为7的数一定是原数除以9余7的数,即7,16,25,,1996,一共有(1996-7)9+1=222(个)3 32第一次操作后,剩下2,4,6,60这30个偶数;第二次操作后,剩下4,8,12,60这15个数(都是4的倍数);第三次操作后,剩下8,16,24,56这7个数(都是8的倍数);第四次操作后,剩下16,32,48这3个数;第五次操作后,剩下一个数,是32.4. 19第一轮操作,保留1,3,5,,25共13张卡片;第二轮保留3,7,11,15,19,23这6张卡片;第三轮保留3,11,19这3张卡片;接着扔掉11,3;最后剩下的一张卡片是19.5. 27次因为54,4=108,所以移动108张牌,又回到原来的状况.又因为每次移动4张牌,所以至少移动1084=27(次).6. 66按照操作的规则,寻找规律知,A=1999时得到的1999位数为:19992668646000.其各位数字和为1+9+9+9+2+6+6+8+6+4 +6=667. 0黑板上的数的和除以7的余数始终不变.(1+2+3+1987)7=282154又1+2+3+1987=1987994=19871427是7的倍数.所以黑板上剩下的两个数之和为7的倍数.又987=7141是7的倍数,所以剩下的另一个数也应是7的倍数,又这个数是某些数的和除以7的余数,故这个数只能是0.8. 4个提示:因为5个子不可能黑白相间,所以永远不会得到5个全是黑子.9. 5103记第i次操作后,圆周上所有数的和为ai,依题意,得ai+1=2ai+ai=3ai.又原来三数的和为a0=1+2+4=7,所以a1=3a0=21,a2=3a1=63,a3=3a2=189,a4=3a3=567,a5=3a4=1701,a6=3a5=5103,即所有数的和为5103.10. 2如果写的是奇数,只需1次操作;如果写的是大于2的偶数,经过1次操作变为奇数,再操作1次变为2.11. 由操作规则知,每次操作后,甲盒中球数减少一个,因此经过3985次操作后,甲盒中剩下1993+1994-3985=2个球.每次操作白球数要么不变,要么减少2个.因此,每次操作后甲盒中白球数的奇偶性不变;即白球数为奇数.因此最后剩下的2个球中,白球1个,故另一个必为黑球.12. 每次加上的数之和是1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍.因此,无论如何操作,黑板上的四个数不可能都是1999.13. 要把三堆石子都取光是不可能的.按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数.而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.所以,三堆石子都取光是办不到的.14. 能101112121011121210111221121110987654321 解:如上图所示,经过两次变换,10、11、12三个数被顺时针移动了两个位置.仿此,再经过3次这样的两次变换,10、11、12三个数又被顺时针移动了六个位置,变为下图,图中十二个数的顺序符合题意.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!