资源描述
,正、余弦定理应用举例,例1 如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出CDa和ACD60,BCD30,BDC105,ADC60,试求AB的长,题型一 测量距离问题,点评:这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解注意:基线的选取要恰当准确;选取的三角形及正、余弦定理要恰当,对点训练,例2 某人在塔的正东沿着南偏西60的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30,求塔高,题型二 测量高度问题,点评:本题有两处易错点:图形中为空间关系,极易当做平面问题处理,从而致错;对仰角、俯角等概念理解不够深入,从而把握不准已知条件而致错,(1)在湖面上高为10 m处测得天空中一朵云的仰角为30,测得湖中影子的俯角为45,则云距湖面的高度为(精确到0.1 m)( ) A2.7 m B. 17.3 m C. 37.3 m D. 373 m,对点训练,故选C,(2)(2014新课标全国文)如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75.从C点测得MCA60,已知山高BC100 m,则山高MN_m.,题型三 测量角度问题,点评:首先应明确方位角的含义,在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步,通过这一步可将实际问题转化成可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点,对点训练,应用正、余弦定理解斜三角形应用题的一般步骤是: (1)分析:理解题意,分清已知与未知,画出示意图; (2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型; (3)求解:利用正弦定理或余弦定理有序地解三角形,求得数学模型的解; (4)检验:检验上述所求的解是否具有实际意义,从而得出实际问题的解,小结:,
展开阅读全文