资源描述
附件: 模具高速铣削加工技术 摘 要 介绍了高速铣削在模具加工中的应用以及影响,并简要的介绍了高速铣削机床的结构、控制系统和刀具。对高速加工的工艺进行了简单的分析。 关键词 高速铣削;模具加工 一、 前言 在现代模具生产中,随着对塑件的美观度及功能要求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的模具结构也设计得越来越复杂。这些都对模具加工技术提出了更高要求,不仅应保证高的制造精度和表面质量,而且要追求加工表面的美观。随着对高速加工技术研究的不断深入, 尤其在加工机床、数控系统、刀具系统、件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制造中 。 数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。相对于传统的切削加工,其切削速度、进给速度有了很大的提高,而且切削机理也不相同。高速切削使切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了 30%40%,切削力降低了 30%,刀具的切削寿命提高了 70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的 提高,单位时间毛坯材料的去除率增加了,切削时间减少了,加工效率提高了,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件 (加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,从而避免了电极的制造和费时的电加 工,大幅度减少了钳工的打磨与抛光量。对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削 工中心上,模具一次装夹可完成多工步加工。 高速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的 “ 退火 铣削加工 热处理 磨削 ” 或 “ 电火花加工 手工打磨、抛光 ” 等复杂冗长的工艺流程,甚至可用高速切削加工替代原来的全部工序。高速加工技术除可应用于淬硬模具型腔的直接加工 (尤其是半精加工和精加工 )外,在 极加工、快速样件制造等方面也得到了广泛应用。大量生产实践表明,应用高速切削 技术可节省模具后续加工中约 80%的手工研磨时间,节约加工成本费用近 30%,模具表面加工精度可达 1 m,刀具切削效率可提高 1 倍。 2 二、 高速铣削加工机床 高速切削技术是切削加工技术的主要发展方向之一,它随着 术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。由于模具加工的特殊性以及高速加工技术的自身特点,对模具高速加工的相关技术及工艺系统 (加工机床、数控系统、刀具等 )提出了比传统模具加工更高的要求。 1. 高稳定性的机床支撑部件 高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻 尼特性。大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,这不但可保证机床精度稳定,也可防止切削时刀具振颤。采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋等也是提高机床稳定性的重要措施。一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算等,优化了结构,使机床支撑部件更加稳定可靠。 2. 机床主轴 高速机床的主轴性能是实现高速切削加工的重要条件。高速切削机床主轴的转速范围为10000100000m/轴功率大于 15过主轴压缩空气或冷却系统控制刀柄和主轴间的轴向间隙不大于 要求主轴具有快速升速、在指定位置快速准停的性能 (即具有极高的角加减速度 ),因此高速主轴常采用液体静压轴承式、空气静压轴承式、热压氮化硅( 瓷轴承磁悬浮轴承式等结构形式。润滑多采用油气润滑、喷射润滑等技术。主轴冷却一般采用主轴内部水冷或气冷。 3. 机床驱动系统 为满足模具高速加工的需要,高速加工机床的驱动系统应具有下列特性: (1) 高的进给速度 。 研究表明,对于小直径刀具,提高转速和每齿进给 量有利于降低刀具磨损。目前常用的进给速度范围为 2030m/采用大导程滚珠丝杠传动,进给速度可达 60m/用直线电机则可使进给速度达到 120m/ (2) 高的加速度。 对三维复杂曲面廓形的高速加工要求驱动系统具有良好的加速度特性,要求提供高速进给的驱动器 (快进速度约 40m/3D 轮廓加工速度为 10m/能够提供 10m/加速度和减速度。 机床制造商大多采用全闭环位置伺服控制的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。随着电机技术的发展,先进的直线电 动机已经问世,并成功应用于 床。先进的直线电动机驱动使 床不再有质量惯性、超前、滞后和振动等问题,加快了伺服响应速度,提高了伺服控制精度和机床加工精度。 4. 数控系统 3 先进的数控系统是保证模具复杂曲面高速加工质量和效率的关键因素,模具高速切削加工对数控系统的基本要求为: a. 高速的数字控制回路 (包括: 32 位或 64 位并行处理器及 上的硬盘;极短的直线电机采样时间。 b. 速度和加速度的前馈控制 (数字 驱动系统的爬行控制 ( c. 先进的插补方法 ( 基于 样条插补 ),以获得良好的表面质量、精确的尺寸和高的几何精度。 d. 预处理 (能。要求具有大容量缓冲寄存器,可预先阅读和检查多个程序段 (如 00 个程序段, 统可达 10002000 个程序段 ),以便在被加工表面形状 (曲率 )发生变化时可及时采取改变进给速度等措施以避免过切等。 e. 误差补偿功能,包括因直线电机、主轴等发热导致的热误差补偿、象限误差补偿、测量系统误差补 偿等功能。 此外,模具高速切削加工对数据传输速度的要求也很高。 f. 传统的数据接口, 如 行口的传输速度为 许多先进的加工中心均已采用以太局域网 (行数据传输,速度可达 200 5. 冷却润滑 高速加工采用带涂层的硬质合金刀具,在高速、高温的情况下不用切削液,切削效率更高。这是因为:铣削主轴高速旋转,切削液若要达到切削区,首先要克服极大的离心力;即使它克服了离心力进入切削区,也可能由于切削区的高温而立即蒸发,冷却效果很小甚至没有;同时切削液会使刀具刃部的温度激烈变 化,容易导致裂纹的产生,所以要采用油 /气冷却润滑的干式切削方式。这种方式可以用高压气体迅速吹走切削区产生的切削,从而将大量的切削热带走,同时经雾化的润滑油可以在刀具刃部和工件表面形成一层极薄的微观保护膜,可有效地延长刀具寿命并提高零件的表面质量。 三、 高速切削加工的刀具 刀具是高速切削加工中最活跃重要的因素之一,它直接影响着加工效率、制造成本和产品的加工精度。刀具在高速加工过程中要承受高温、高压、摩擦、冲击和振动等载荷,高速切削刀具应具有良好的机械性能和热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。高 速切削加工的刀具技术发展速度很快,应用较多的如金刚石 (立方氮化硼 (陶瓷刀具、涂层硬质合金、(碳 )氮化钛硬质合金 )等。 在加工铸铁和合金钢的切削刀具中,硬质合金是最常用的刀具材料。硬质合金刀具耐磨性好,但硬度比立方氮化硼和陶瓷低。为提高硬度和表面光洁度,采用刀具涂层技术,涂层材料为氮化钛(氮化铝钛 (。涂层技术使涂层由单一涂层发展为多层、多种涂层材料的涂层,已成为提高高速切削能力的关键技术之一。直径在 1040围内,且有碳氮化钛涂层的硬质合金刀片能够加 工洛氏硬度小于 42的材料,而氮化钛铝涂层的刀具能够加工洛氏硬度为 42甚至更高的材料。高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的 P 类硬质合金、涂层硬质合金、立方氮化硼( 合刀具材料( 。切削铸铁,应选用细晶粒的 K 类硬质合金进行粗加工, 4 选用复合氮化硅陶瓷或聚晶立方氮化硼( 合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶金刚石 刚石涂层刀具。选择切削参数时,针对圆刀片和球头铣刀,应注意有效直径的概念。高速铣削刀具应按动平衡设计制造。刀具的前角比 常规刀具的前角要小,后角略大。主副切削刃连接处应修圆或导角,来增大刀尖角,防止刀尖处热磨损。应加大刀尖附近的切削刃长度和刀具材料体积,提高刀具刚性。在保证安全和满足加工要求的条件下,刀具悬伸尽可能短,刀体中央韧性要好。刀柄要比刀具直径粗壮,连接柄呈倒锥状,以增加其刚性。尽量在刀具及刀具系统中央留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。 四、 模具高速加工工艺 高速加工包括以去除余量为目的的粗加工、残留粗加工,以及以获 取高质量的加工表面及细微结构为目的的半精加工、精加工和镜面加工等。 1. 粗加工 模具粗加工的主要目标是追求单位时间内的材料去除率,并为半精加工准备工件的几何轮廓。高速加工中的粗加工所应采取的工艺方案是高切削速度、高进给率和小切削用量的组合。等高加工方式是众多 件普遍采用的一种加工方式。应用较多的是螺旋等高和等 Z 轴等高两种方式,也就是在加工区域仅一次进刀,在不抬刀的情况下生成连续光滑的刀具路径,进、退刀方式采用圆弧切入、切出。螺旋等高方式的特点是,没有等高层之间的刀路移动,可避免频繁抬刀、进刀对零件表面质量 的影响及机械设备不必要的耗损。对陡峭和平坦区域分别处理,计算适合等高及适合使用类似 3D 偏置的区域,并且可以使用螺旋方式,在很少抬刀的情况下生成优化的刀具路径,获得更好的表面质量。在高速加工中,一定要采取圆弧切入、切出连接方式,以及拐角处圆弧过渡,避免突然改变刀具进给方向,禁止使用直接下刀的连接方式,避免将刀具埋入工件。加工模具型腔时,应避免刀具垂直插入工件,而应采用倾斜下刀方式 (常用倾斜角为 2030) ,最好采用螺旋式下刀以降低刀具载荷。加工模具型芯时,应尽量先从工件外部下刀然后水平切入工件。刀具切入、 切出工件时应尽可能采用倾斜式 (或圆弧式 )切入、切出,避免垂直切入、切出。采用攀爬式切削可降低切削热,减小刀具受力和加工硬化程度,提高加工质量。 2. 半精加工 模具半精加工的主要目标是使工件轮廓形状平整,表面精加工余量均匀,这对于工具钢模具尤为重要,因为它将影响精加工时刀具切削层面积的变化及刀具载荷的变化,从而影响切削过程的稳定性及精加工表面质量。 粗加工是基于体积模型,精加工则是基于面模型。以前开发的 统对零件的几何描述是不连续的,由于没有描述粗加工后、精加工前加工模型的中间信息,故粗加 工表面的剩余加工余量分布及最大剩余加工余量均是未知的。因此应对半精加工策略进行优化以保证半精加工后工件表面具有均匀的剩余加工余量。优化过程包括:粗加工后轮廓的计算、最大剩余加工余量的计算、最大允许加工余量的确定、对剩余加工余量大于最大允许加工余量的型面分区 (如凹槽、拐角等过渡半径小于粗加工刀具半径的区域 )以及半精加工时刀心轨迹的计算等。 5 现有的模具高速加工 C A D /件大都具备剩余加工余量分析功能,并能根据剩余加工余量的大小及分布情况采用合理的半精加工策略。如 状铣削 (剩余铣削 (方法来清除粗加工后剩余加工余量较大的角落以保证后续工序均匀的加工余量。 3. 精加工 模具的高速精加工策略取决于刀具与工件的接触点,而刀具与工件的接触点随着加工表面的曲面斜率和刀具有效半径的变化而变化。对于由多个曲面组合而成的复杂曲面加工,应尽可能在一个工序中进行连续加工,而不是对各个曲面分别进行加工,以减少抬刀、下刀的次数。然而,由于加工中表面斜率的变化,如果只定义加工的侧吃刀量 (就可能造成在斜率不同的表面上实 际步距不均匀,从而影响加工质量。 一般情况下,精加工曲面的曲率半径应大于刀具半径的 ,以避免进给方向的突然转变。在模具的高速精加工中,在每次切入、切出工件时,进给方向的改变应尽量采用圆弧或曲线转接,避免采用直线转接,以保持切削过程的平稳性。 五、 结束语 高速切削技术是切削加工技术的主要发展方向之一,目前主要应用于汽车工业和模具行业,尤其是在加工复杂曲面的领域、工件本身或刀具系统刚性要求较高的加工领域等,是多种先进加工技术的集成,其高效、高质量为人们所推崇。它不仅涉及到高速加工工艺,而且还包括高 速加工机床、数控系统、高速切削刀具及 术等。模具高速加工技术目前已在发达国家的模具制造业中普遍应用,而在我国的应用范围及应用水平仍有待提高,由于其具有传统加工无可比拟的优势,仍将是今后加工技术必然的发展方向 6 in as as on to n to to by is to a to is to is so AM to in in a is is in a Is in to to to 0%40%, 0%, 0%, in At to to be to be is to In in to be to 7 s to in NC a of to to to so on in in DM so on in 0% to 0%, m, he is of it so NC a as as (to so a to 1. he so on to be to of in by is so on in so to be 8 2. he is 0000100000m/is 5Is of or to to is to so on or 3. n to to be to (1) is in At 030m/0m/ to 20m/ to (2) to or to 0m/ D 0m/ 2 0m/s2 to or in NC NC no to in so on up of 4. he is to 9 A. 32 or 4 B. C. up to on by D. in MG to be to 00 a 10002000 in to is so on by so E. so on to so on In is to F. to on 005. he in to is if if it to as a of to At of a is to as at in of a he is in of it 10 so on in is (N) so In in is to In to of so by of of in 040mm to be to uo of to be 2 uo of 2 of BN
展开阅读全文