资源描述
圆的有关性质1(2016绍兴)如图,BD是O的直径,点A,C在O上,AOB60,则BDC的度数是( D )A60 B45 C35 D30,第1题图),第2题图)2(2016黔南州)如图,AB是O的直径,弦CDAB于点E,CDB30,O的半径为5 cm,则圆心O到弦CD的距离为( A )A. cm B3 cm C3 cm D6 cm3(2016巴彦淖尔)如图,线段AB是O的直径,弦CDAB,CAB40,则ABD与AOD分别等于( B )A40,80 B50,100C50,80 D40,100,第3题图),第4题图)4(2016杭州)如图,已知AC是O的直径,点B在圆周上(不与A,C重合),点D在AC的延长线上,连接BD交O于点E,若AOB3ADB,则( D )ADEEB B.DEEBC.DEDO DDEOB5(导学号59042173)(2016聊城)如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若ABC105,BAC25,则E的度数为( B )A45 B50 C55 D60,第5题图),第6题图)6(导学号59042174)(2016泰安)如图,点A,B,C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于( B )A12.5 B15 C20 D22.57(2016永州)如图,在O中,A,B是圆上的两点,已知AOB40,直径CDAB,连接AC,则BAC_35_度,第7题图),第8题图)8(2015包头)如图,O是ABC的外接圆,AD是O的直径,若O的半径是4,sinB,则线段AC的长为_2_9(2015南京)如图,在O的内接五边形ABCDE中,CAD35,则BE_215_.,第9题图),第10题图)10(2016雅安)如图,在ABC中,ABAC10,以AB为直径的O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD2,则BE的长为_8_.11(导学号59042175)(2016南充)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是_50_mm.12(2015安徽)在O中,直径AB6,BC是弦,ABC30,点P在BC,点Q在O上,且OPPQ.(1)如图1,当PQAB时,求PQ的长;(2)如图2,当点P在BC上移动时,求PQ长的最大值解:(1)连接OQ,tan30,PO,又OQ3,PQ(2)PQ2OQ2OP2,OQ3,当OP2最小时,PQ2最大,即当OPBC时PQ2最大,此时OPOB,PQ最大2OQ2OP2,PQ最大13(导学号59042176)(2016安徽)如图,RtABC中,ABBC,AB6,BC4,P是ABC内部的一个动点,且满足PABPBC,则线段CP长的最小值为( B )A. B2 C. D.,第13题图),第14题图)14(导学号59042177)(2016成都)如图,ABC内接于O,AHBC于点H,若AC24,AH18,O的半径OC13,则AB_15(导学号59042178)如图,在平面直角坐标系中,以点M(0,)为圆心,以2长为半径作M交x轴于A,B两点,交y轴于C、D两点,连接AM并延长交M于P点,连接PC交x轴于E.(1)求点C,P的坐标;(2)求证:BE2OE.解:(1)连接PB,PA是圆M的直径,PBA90,AOOB3,又MOAB,PBMO,PB2OM2,P点坐标为(3,2),OCMCOM,则C(0,)(2)连接AC.AMMC2,AO3,OC,AMMCAC2,AMC为等边三角形,又AP为圆M的直径,ACP90,OCE30,OE1,BE2,BE2OE16(导学号59042179)(2015德州)如图,O的半径为1,A,P,B,C是O上的四个点,APCCPB60.(1)判断ABC的形状:_等边三角形_;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积解:(2)PAPBPC.证明:如图,在PC上截取PDPA,连接AD.APC60,PAD是等边三角形,PAAD,PAD60,又BAC60,PABDAC.又ABAC,PABDAC(SAS),PBDC.PDDCPC,PAPBPC(3)当点P为的中点时,四边形APBC面积最大理由:如图,过点P作PEAB,垂足为E,过点C作CFAB,垂足为F,SPABABPE,SABCABCF,S四边形APBCAB(PECF)当点P为的中点时,PECFPC,PC为O的直径,此时四边形APBC面积最大又O的半径为1,其内接正三角形的边长AB,S四边形APBC最大2
展开阅读全文