《复变函数与积分变换》复习(研究生)2013

上传人:gbs****77 文档编号:10272380 上传时间:2020-04-11 格式:DOC 页数:6 大小:333.50KB
返回 下载 相关 举报
《复变函数与积分变换》复习(研究生)2013_第1页
第1页 / 共6页
《复变函数与积分变换》复习(研究生)2013_第2页
第2页 / 共6页
《复变函数与积分变换》复习(研究生)2013_第3页
第3页 / 共6页
点击查看更多>>
资源描述
复变函数与积分变换研究生复习计算题部分一、 填空题1. 若,则材=(P14,两个复数的商等于它们的模的商;两个复数的商的辐角等于被除数和除数的辐角之差)2. 复数的指数形式是,幅角主值= 。(P46)3. 复数= ,= (计算过程可见第三题)。(P46)4. 设 解析,则, = 。(P41,柯西。黎曼方程)5. 设C为自原点到的直线段,则积分=(用牛顿-莱布尼兹公式)。6. 级数是 条件收敛 (填发散、条件收敛或绝对收敛)。7. =。(请分别用柯西积分公式或留数定理计算)8. 设.,则 是可去奇点(选:可去奇点、极点或本性奇点), = 0 。9. 函数的奇点是(都是一级极点)10. 是 的 本性奇点 (选:可去奇点、极点或本性奇点),= 1 。11. 函数的幂级数展开式是。12. 拉普拉斯变换的定义是。13. 若, 则 。二、 计算1. 说明函数在一点连续、可导、解析的关系。讨论的连续、可导、解析性。答:函数在一点连续、可导、解析的关系是:解析可导连续,反之不成立。 对,设,则,即 。由于都是连续函数,故在复平面上处处连续。由于。显然可微,但只在处满足柯西-黎曼方程。因此只在处可导,但在复平面上处处不解析。2. 分别求 和 的模、幅角、实部、虚部。解:所以模为 ,幅角4 + 2 k (主值为4 -),实部、虚部。所以模为 ,幅角 + 2 k (主值为 ),实部 、虚部 。3. 求,解:。其中k = 0时可得相应主值。4. 验证 是调和函数,并求,使函数为解析函数。解:,因此u是调和函数。下面用偏积分法求v:由,得到;再由,得,所以当时,为解析函数。三、 求下列积分1. ,其中C是从0到的直线段。解:由于z e z 是解析函数,用分部积分法可得2. 其中C是从0到的直线段解:由于被积函数不解析,本题只能沿曲线来计算积分。直线段的参数方程为 z =(2 + i)t ( t从0到1),d z =(2 + i)d t。所以得到3. 设,求(6分)解:所以 进而得 4. 求积分,为不通过的闭曲线.解:当a不在C内时,由柯西-古萨基本定理,得 当a在C内时,由高阶导数公式,得 。5. 解:的一级极点有z = 0.5+k,其中在C内。且由法则可求得在各极点处的留数为。故由留数定理得同理; 四. 函数的展开式1. 求在内的罗朗展开。2. 在内的罗朗展开。3. 将函数 展成 z 的罗朗级数,并指出收敛范围。解:1. 对,因为在内有 ,故在 内有 2. 对,在内时3. 四、 积分变换部分1. 求拉氏变换,。解:2. 求下列函数的拉氏逆变换 , 解: 证明题部分1. 应用棣莫弗公式证明 2. 证明:如果函数在区域D内解析,且在D内是一个常数, 那么是常数。3. 证明4. 证明如果级数在它的收敛圆的圆周上一点处绝对收敛,则它在收敛圆所围成的闭区域上绝对收敛。综合题部分1. 写出指数函数,对数函数,幂函数,正弦函数,余弦函数的表达式,并指出它们的特性,例如,解析性(导数是什么),周期性,是否有界等。2. 设函数在处分别有m级及n级零点,试问在处具有什么性质(解析?零点?可去奇点?极点?本性奇点?), 并根据m, n的不同情况求出它们的留数(其中m,n为非负整数)3. 描述什么是洛朗级数与泰勒级数,并说出它们的区别与关系是什么。(请就知道的尽量回答完整)4. 试说明柯西定理,柯西积分公式,高阶导数公式是留数定理的特殊情况。6第 页
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!