湖南大学大学物理练习册答案(一、二上下两册全)

上传人:gbs****77 文档编号:10240198 上传时间:2020-04-10 格式:DOC 页数:85 大小:5.42MB
返回 下载 相关 举报
湖南大学大学物理练习册答案(一、二上下两册全)_第1页
第1页 / 共85页
湖南大学大学物理练习册答案(一、二上下两册全)_第2页
第2页 / 共85页
湖南大学大学物理练习册答案(一、二上下两册全)_第3页
第3页 / 共85页
点击查看更多>>
资源描述
大学物理(一)练习册 参考解答第1章 质点运动学一、选择题1(D),2(D),3(B),4(D),5(D),6(D),7(D),8(D ),9(B),10(B),二、填空题(1). , (n = 0,1, ),(2). 8 m,10 m. (3). 23 m/s.(4). 16Rt2 ,4 rad /s2 (5). 4t3-3t2 (rad/s),12t2-6t (m/s2). (6). ,2ct,c2t4/R. (7). 2.24 m/s2,104o (8). m/s,0,圆.(9). h1v /(h1-h2)(10). 三、计算题1. 有一质点沿x轴作直线运动,t时刻的坐标为x = 4.5 t2 2 t3 (SI) 试求: (1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程解:(1) m/s (2) v = d x/d t = 9t - 6t2, v(2) =-6 m/s. (3) S = |x(1.5)-x(1)| + |x(2)-x(1.5)| = 2.25 m.2. 一质点沿x轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m处,初速度v0 = 0试求其位置和时间的关系式解: dv /dtt , dv t dt v = 2t2 vx /d tt2 x t3 /3+x0 (SI)3. 质点沿x轴运动,其加速度a与位置坐标x的关系为 a26 x2 (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度解:设质点在x处的速度为v, 4. 一物体悬挂在弹簧上作竖直振动,其加速度为ky,式中k为常量,y是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y0处的速度为v0,试求速度v与坐标y的函数关系式解: 又 ky -kv dv / dy 已知 y0 ,v0 则 5. 一质点沿半径为R的圆周运动质点所经过的弧长与时间的关系为 其中b、c是大于零的常量,求从开始到切向加速度与法向加速度大小相等时所经历的时间解: 根据题意: at = an 即 解得 6. 如图所示,质点P在水平面内沿一半径为R=2 m的圆轨道转动转动的角速度w与时间t的函数关系为 (k为常量)已知时,质点P的速度值为32 m/s试求s时,质点P的速度与加速度的大小 解:根据已知条件确定常量k , 时, v = 4Rt2 = 8 m/s m/s2 7. (1)对于在xy平面内,以原点O为圆心作匀速圆周运动的质点,试用半径r、角速度w和单位矢量、表示其t时刻的位置矢量已知在t = 0时,y = 0, x = r, 角速度w如图所示; (2)由(1)导出速度 与加速度 的矢量表示式;(3)试证加速度指向圆心 解:(1) (2) (3) 这说明 与 方向相反,即指向圆心 8. 一飞机驾驶员想往正北方向航行,而风以60 km/h的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180 km/h,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明解:设下标A指飞机,F指空气,E指地面,由题可知: vFE =60 km/h 正西方向 vAF =180 km/h 方向未知 vAE 大小未知, 正北方向 由相对速度关系有: 、 、构成直角三角形,可得 (飞机应取向北偏东19.4的航向) 四 研讨题1. 在下列各图中质点M作曲线运动,指出哪些运动是不可能的? 参考解答:(1)、(3)、(4)是不可能的(1) 曲线运动有法向加速度,加速度不可能为零;(3) 曲线运动法向加速度要指向曲率圆心;(4) 曲线运动法向加速度不可能为零.2. 设质点的运动方程为,在计算质点的速度和加速度时:第一种方法是,先求出,然后根据 及 而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即 和 .你认为两种方法中哪种方法正确?参考解答:第二种方法是正确的。因为速度和加速度都是矢量,根据定义,所以, .第一种方法是错误的,问题的关键在于位移、速度、加速度的矢量性 (为r方向的单位矢量),.问题的关键:在第二种方法中,如果在第一种方法的讨论中,那么 =则也成立!注意:若则必须是大小与方向均不随时间改变的常矢量。根据质点的运动方程为,质点作平面曲线运动,如图所示,大小不变,但方向改变!所以即第一种方法是错误的!只有在直线运动中,(显然是大小与方向均不随时间改变的常矢量)速度的大小才等于.对加速度的大小也可以用同样方法加以讨论.第2章 质点力学的运动定律 守恒定律一、选择题1(C),2(E),3(D),4(C),5(C),6(B),7(C),8(C),9(B),10(C),11(B),12(A),13(D)二、填空题(1). w2=12rad/s,A=0.027J(2). 290J(3). 3J (4). 18 Ns(5). (SI)(6). 16 Ns, 176 J(7). 16 Ns ,176 J(8). ,(9). 63.2 N(10). (2 m,6 m); (-4 m,2 m)和(6 m,8 m); 2 m和6 m.三、计算题1. 已知一质量为m的质点在x轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x的平方成反比,即,k是比例常数设质点在 x=A时的速度为零,求质点在x=A /4处的速度的大小 解:根据牛顿第二定律 2. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为,忽略子弹的重力,求: (1) 子弹射入沙土后,速度随时间变化的函数式; (2) 子弹进入沙土的最大深度解:(1) 子弹进入沙土后受力为v,由牛顿定律 (2) 求最大深度解法一: 解法二: 3. 如图,用传送带A输送煤粉,料斗口在A上方高h0.5 m处,煤粉自料斗口自由落在A上设料斗口连续卸煤的流量为qm40 kg/s,A以v2.0 m/s的水平速度匀速向右移动求装煤的过程中,煤粉对A的作用力的大小和方向(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度 设煤粉与A相互作用的Dt时间内,落于传送带上的煤粉质量为 设A对煤粉的平均作用力为,由动量定理写分量式: 将 代入得 , N 与x轴正向夹角为a = arctg (fx / fy ) = 57.4 由牛顿第三定律煤粉对A的作用力f= f = 149 N,方向与图中相反4. 有一水平运动的皮带将砂子从一处运到另一处,砂子经一竖直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1) 若每秒有质量为qm=dM/dt的砂子落到皮带上,要维持皮带以恒定速率v运动,需要多大的功率? (2) 若qm=20 kg/s,v1.5 m/s,水平牵引力多大?所需功率多大?解:(1) 设t时刻落到皮带上的砂子质量为M,速率为v,t+dt时刻,皮带上的砂子质量为M+dM,速率也是v,根据动量定理,皮带作用在砂子上的力F的冲量为: 由第三定律,此力等于砂子对皮带的作用力F,即F=F由于皮带匀速运动,动力源对皮带的牵引力F=F, 因而, F =F,F与v同向,动力源所供给的功率为: (2) 当qmdM/dt=20 kg/s,v1.5 m/s 时,水平牵引力 Fvqm=30 N 所需功率 P=v 2qm=45 W 5.一链条总长为l,质量为m,放在桌面上,并使其部分下垂,下垂一段的长度为a设链条与桌面之间的滑动摩擦系数为m令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少? 解:(1)建立如图坐标. 某一时刻桌面上全链条长为y,则摩擦力大小为 摩擦力的功 = = (2)以链条为对象,应用质点的动能定理 W 其中 W = W PWf ,v0 = 0 WP = 由上问知 所以 得 6.小球A,自地球的北极点以速度在质量为M、半径为R的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO与平行,小球A的运动轨道与轴OO相交于距O为3R的C点不考虑空气阻力,求小球A在C点的速度与之间的夹角q 解:由机械能守恒: 根据小球绕O角动量守恒: 、式联立可解出 7.质量为mA的粒子A受到另一重粒子B的万有引力作用,B保持在原点不动起初,当A离B很远( r = )时,A具有速度,方向沿图中所示直线Aa,B与这直线的垂直距离为D粒子A由于粒子B的作用而偏离原来的路线,沿着图中所示的轨道运动已知这轨道与B之间的最短距离为d,求B的质量mB 解:A对B所在点的角动量守恒设粒子A到达距B最短距离为d时的速度为v , A、B系统机械能守恒(A在很远处时, 引力势能为零) 解得 8. 一个具有单位质量的质点在随时间 t变化的力 (SI) 作用下运动设该质点在t = 0时位于原点,且速度为零求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量 解: 以下各式均为SI式 m = 1, , ,t = 0时, , t = 0时, 当t = 2 s时 ,, 力矩 角动量 四 研讨题1. 汽车发动机内气体对活塞的推力以及各种传动部件之间的作用力能使汽车前进吗?使汽车前进的力是什么力?参考解答:汽车发动机内气体对活塞的推力以及各种传动部件之间的作用力都是汽车系统的内力,内力只会改变内部各质点的运动状态,不会改变系统的总动量,所以不能使汽车前进。使汽车前进的力只能是外力,这个外力就是地面给汽车的摩擦力。粗略分析如下:当汽车发动机内气体对活塞的推力带动传动部件使主动轮( 一般为汽车的后轮)绕轮轴转动时,使主动轮与地面的接触部分相对地面有向后滑动的趋势,从而使地面对汽车施以向前的摩擦力,使汽车整体向前加速运动。由于汽车前进使从动轮(汽车的前轮)相对地面有向前的运动趋势,因此从动轮受到地面施以的方向向后的摩擦力,该摩擦力对从动轮轴的力矩使从动轮滚动起来。所以汽车的运动最终靠的是地面施加的摩擦力。2. 冲量的方向是否与冲力的方向相同?参考解答:冲量是力对时间的积累,由动量定理:所以,冲量的方向和动量增量的方向相同,不一定与冲力的方向相同。3. 一物体可否只具有机械能而无动量?一物体可否只有动量而无机械能?试举例说明。参考解答:机械能是系统作机械运动的动能和势能的总和.动能与物体相对参考系的运动速度有关,势能则属于保守力系统,一物体具有的势能,是相对势能零点而言的。若取保守力系统,物体相对参考系静止,那么物体的动能为零,物体的动量也为零。该系统的机械能就是物体相对系统势能零点所具有的势能.所以,一物体可以有机械能而无动量。例如:一质量为m 的物体(例如一气球)静止在相对于地面为h的高处,此时对于物体和地球系统,具有的机械能为重力势能,其值为 mgh。由于此时物体静止,故其动量为零。在保守力系统中,若一物体运动至某一位置时所具有的动能值,恰等于该位置相对势能零点所具有的负的势能值,则该物体的机械能为零,而因物体具有动能,因而动量不为零。所以,一物体也可以有动量而无机械能。例如:物体自离地面高为h处自由下落,取物体和地球为系统,并取下落处为重力势能零点.初始时刻系统的机械能 E0=0,下落至地面时,物体具有速度的大小为v,动能为mv 2/2,动量的大小为 mv,系统的机械能为 E =mv2/2 - mgh = E0=0.4. 在经典力学范围内,若某物体系对某一惯性系满足机械能守恒条件,则在相对于上述惯性系作匀速直线运动的其它参照系中,该物体系是否一定也满足机械能守恒条件?请举例说明 参考解答:不一定满足守恒条件 例如在水平面上以速度匀速直线行驶的车厢顶上悬挂一小球以车厢为参考系,小球摆动过程中绳子张力对小球不作功,则小球地系统机械能守恒若以地面为参考系,小球相对于车厢的摆动速度为,则小球对地速度,与绳张力不垂直,故小球摆动过程中绳张力对小球要作功,这时小球地系统不满足机械能守恒条件但在上述两个参考系(惯性系)中,动能定理和功能原理仍是成立的5. 在车窗都关好的行驶的汽车内,漂浮着一个氢气球,当汽车向左转弯时,氢气球在车内将向左运动还是向右运动?参考解答:在空气中释放一氢气球,它将受浮力的作用上升。这浮力的根源是大气在重力场中的压强上小下大,因而对氢气上下表面的压力不同,上小下大,而使浮力与重力的方向相反。在题述汽车向左转弯时,它具有指向车厢左侧的法向加速度。因而汽车是一非惯性系。在汽车内观察,即以汽车为参考系,其中空气将受到指向右侧的惯性离心力。汽车内的空气就好象处在一水平向右的“重力场”中一样。根据Fi=mw2r,这“重力场”左弱右强。和在地球表面空气中氢气球受浮力要向上运动类似,在汽车内空气中的氢气球将受到水平向左(与水平“重力”方向相反)的“浮力”的作用而向左运动。(忽略由于氢气球质量很小而引起的在车内看到的很小的向右的运动)第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C)二、填空题(1). v 15.2 m /s,n2500 rev /min(2). 62.5 1.67(3). g / l g / (2l)(4). 5.0 Nm(5). 4.0 rad/s(6). 0.25 kgm2(7). (8). 参考解:M(9). (10). 三、计算题1. 有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为,若平板绕通过其中心且垂直板面的固定轴以角速度0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量,其中m为圆形平板的质量)解:在r处的宽度为dr 的环带面积上摩擦力矩为 总摩擦力矩 故平板角加速度 b =M /J 设停止前转数为n,则转角 q = 2pn 由 可得 2. 如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动假设定滑轮质量为M、半径为R,其转动惯量为,滑轮轴光滑试求该物体由静止开始下落的过程中,下落速度与时间的关系解:根据牛顿运动定律和转动定律列方程 对物体: mgT ma 对滑轮: TR = Jb 运动学关系: aRb 将、式联立得 amg / (mM) v00, vatmgt / (mM) 3. 为求一半径R50 cm的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m18 kg的重锤让重锤从高2 m处由静止落下,测得下落时间t116 s再用另一质量m2=4 kg的重锤做同样测量,测得下落时间t225 s假定摩擦力矩是一个常量,求飞轮的转动惯量解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TRMfJa / R mgTma h 则将m1、t1代入上述方程组,得 a12h /0.0156 m / s2 T1m1 (ga1)78.3 N J(T1RMf )R / a1 将m2、t2代入、方程组,得 a22h / 6.410-3 m / s2 T2m2(ga2)39.2 N J = (T2RMf)R / a2 由、两式,得 JR2(T1T2) / (a1a2)1.06103 kgm2 4. 一转动惯量为J的圆盘绕一固定轴转动,起初角速度为w0设它所受阻力矩与转动角速度成正比,即Mkw (k为正的常数),求圆盘的角速度从w0变为时所需的时间解:根据转动定律: Jdw / dt = -kw 两边积分: 得 ln2 = kt / J t(J ln2) / k 5. 某人站在水平转台的中央,与转台一起以恒定的转速n1转动,他的两手各拿一个质量为m的砝码,砝码彼此相距l1 (每一砝码离转轴l1),当此人将砝码拉近到距离为l2时(每一砝码离转轴为l2),整个系统转速变为n2求在此过程中人所作的功(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略) 解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W等于系统动能之增量: WDEk 这里的J0是没有砝码时系统的转动惯量 (2) 过程中无外力矩作用,系统的动量矩守恒: 2p(J0) n1 = 2p (J0) n2 (3) 将J0代入W式,得 6. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为m),圆盘可绕通过其中心O的竖直固定光滑轴转动开始时,圆盘静止,一质量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求 (1) 子弹击中圆盘后,盘所获得的角速度 (2) 经过多少时间后,圆盘停止转动 (圆盘绕通过O的竖直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩) 解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O的角动量守恒 mv0R(MR2mR2)w (2) 设s表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 (2 / 3)pmgR3(2 / 3)mMgR 设经过Dt时间圆盘停止转动,则按角动量定理有 Mf Dt0Jw(MR2mR2)w- mv 0R 7.一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞碰撞点位于棒中心的一侧处,如图所示求棒在碰撞后的瞬时绕O点转动的角速度w(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的m和l分别为棒的质量和长度) 解:碰撞前瞬时,杆对O点的角动量为 式中r为杆的线密度碰撞后瞬时,杆对O点的角动量为 因碰撞前后角动量守恒,所以 w = 6v0 / (7L) 8. 长为l的匀质细杆,可绕过杆的一端O点的水平光滑固定轴转动,开始时静止于竖直位置紧挨O点悬一单摆,轻质摆线的长度也是l,摆球质量为m若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止求: (1) 细杆的质量 (2) 细杆摆起的最大角度q 解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为w,系统角动量守恒得: Jw = mv0l 由于是弹性碰撞,所以单摆的动能变为细杆的转动动能 代入J,由上述两式可得 M3m (2) 由机械能守恒式 及 并利用(1) 中所求得的关系可得 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。 参考解答:不能 因为刚体的转动惯量与各质量元和它们对转轴的距离有关如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为,若按质量全部集中于质心计算,则对同一轴的转动惯量为零 2. 刚体定轴转动时,它的动能的增量只决定于外力对它做的功而与内力的作用无关。对于非刚体也是这样吗?为什么?参考解答:根据动能定理可知,质点系的动能增量不仅决定于外力做的功,还决定于内力做的功。由于刚体内任意两质量元间的距离固定,或说在运动过程中两质量元的相对位移为零,所以每一对内力做功之和都为零。故刚体定轴转动时,动能的增量就只决定于外力的功而与内力的作用无关了。非刚体的各质量元间一般都会有相对位移,所以不能保证每一对内力做功之和都为零,故动能的增量不仅决定于外力做的功还决定于内力做的功。3. 乒乓球运动员在台面上搓动乒乓球,为什么乒乓球能自动返回?参考解答:分析:乒乓球(设乒乓球为均质球壳)的运动可分解为球随质心的平动和绕通过质心的轴的转动乒乓球在台面上滚动时,受到的水平方向的力只有摩擦力若乒乓球平动的初始速度vc的方向如图,则摩擦力 Fr的 方向一定向后摩擦力的作用有二,对质心的运动来说,它使质心平动的速度vc 逐渐减小;对绕质心的转动来说,它将使转动的角速度w逐渐变小当质心平动的速度vc= 0而角速度w 0 时,乒乓球将返回因此,要使乒乓球能自动返回,初始速度vc和初始角速度w0的大小应满足一定的关系解题:由质心运动定理: 因, 得 (1)由对通过质心的轴(垂直于屏面)的转动定律, 得 (2)由(1),(2)两式可得 , 令 可得 这说明当vc= 0和w0的大小满足此关系时,乒乓球可自动返回第3章 狭义相对论一、选择题1(B),2(C),3(C),4(C),5(B),6(D),7(C),8(D),9(D),10(C)二、填空题(1). c (2). 4.3310-8s (3). Dx/v , (4). c (5). 0.99c(6). 0.99c(7). 8.8910-8 s(8). (9). ,(10). 91016 J, 1.51017 J 三、计算题1. 在K惯性系中观测到相距Dx = 9108 m的两地点相隔Dt=5 s发生两事件,而在相对于K系沿x方向以匀速度运动的K系中发现此两事件恰好发生在同一地点试求在K系中此两事件的时间间隔解:设两系的相对速度为v , 根据洛仑兹变换, 对于两事件,有 由题意: 可得 Dx = v Dt 及 , 由上两式可得 = 4 s 2.在K惯性系中,相距Dx = 5106 m的两个地方发生两事件,时间间隔Dt = 10-2 s;而在相对于K系沿正x方向匀速运动的K系中观测到这两事件却是同时发生的试计算在K系中发生这两事件的地点间的距离Dx是多少? 解:设两系的相对速度为v根据洛仑兹变换, 对于两事件,有 由题意: 可得 及 由上两式可得 = 4106 m 3. 一艘宇宙飞船的船身固有长度为L0 =90 m,相对于地面以0.8 c (c为真空中光速)的匀速度在地面观测站的上空飞过 (1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 54 m 则 Dt1 = L/v =2.2510-7 s (2) 宇航员测得飞船船身的长度为L0,则 Dt2 = L0/v =3.7510-7 s 4. 一飞船和慧星相对于地面分别以0.6c和0.8c速度相向运动,在地面上观察,5s后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔t = 5s是运动着的对象飞船和慧星发生碰撞的时间间隔,因此是运动时在飞船上观察的碰撞时间间隔t是以速度v = 0.6c运动的系统的本征时,根据时间膨胀公式,可得时间间隔为= 4(s)5. 在惯性系中,有两个静止质量都是m0的粒子A和B,它们以相同的速率v相向运动,碰撞后合成为一个粒子,求这个粒子的静止质量M0 解:设粒子的速度为,粒子的速度为,合成粒子的运动速度为由动量守恒得 因,且,所以 即合成粒子是静止的由能量守恒得 解出 6. 两个质点A和B,静止质量均为m0质点A静止,质点B的动能为6m0c2设A、B两质点相撞并结合成为一个复合质点求复合质点的静止质量解:设复合质点静止质量为M0,运动时质量为M由能量守恒定律可得 其中mc2为相撞前质点B的能量 故 设质点B的动量为pB,复合质点的动量为p由动量守恒定律 利用动量与能量关系,对于质点B可得 对于复合质点可得 由此可求得 四 研讨题1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?参考解答:牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。牛顿力学时空概念是相对论时空观在低速(即运动速度远远小于光速)时的近似。牛顿力学时空观的基本原理是力学相对性原理,由力学基本原理得到的两个惯性系的运动量间的关系是伽利略变换 狭义相对论时空观的基本原理是相对论的相对性原理和光速不变原理,而相应运动量之间的变换是洛仑兹变换 比较上述两个变换式可知,在低速时,即时,洛仑兹变换式就会过渡到伽利略变换式。2. 同时的相对性是什么意思?为什么会有这种相对性?如果光速是无限大,是否还会有同时性的相对性?参考解答:同时性的相对性的意思是:在某一惯性系中两地同时发生的两个事件,在相对于此惯性系匀速运动的另一惯性系中观测,并不是同时发生的。这个结论与光速不变原理紧密相联。设相对运动的惯性系是和,坐标系和相对运动如图所示,坐标原点0和重合时设为。由洛仑兹变换,两事件的时空坐标关系为 如果在系中两事件同时发生,即,那么在系中两事件的时间间隔与两事件在系中发生的空间间隔有关。当时,。即两事件在系中不同时发生。如果光速是无限大,也就是研究的对象均属于低速情况,那必然是牛顿力学的情况。即洛仑兹变换中的 则 ,就不再有同时的相对性。3. 在某一参考系中同一地点、同一时刻发生的两个事件,在任何其他参考系中观察观测都将是同时发生的,对吗?这里的参考系均指惯性系。参考解答:对的。如果系和系是相对于运动的两个惯性系。设在系中同一地点、同一时刻发生了两个事件,即.将上述已知条件代入下面的洛仑兹坐标变换式中 则可得 ,说明在系中也是同时发生的。 这就是说,在同一地点,同一时刻发生的两个事件,在任何其他参考系中观察观测也必然是同时发生。4. 静长L 0的火车以匀速v行驶时,甲是地面上的观测者,相对于地面静止;乙是火车上的观测者,相对于火车静止. 甲观测到的长度 L0 ,即火车的动长小于静长,这就是甲所观测到的长度收缩. 试从另一个角度来看长度收缩问题,即被测量者如何看待别人的测量,并讨论产生不同看法的原因.参考解答:当火车以匀速v行驶时,甲是地面上的观测者,相对于地面静止;乙是火车上的观测者,相对于火车静止. 以地面为S系,沿火车速度方向取x轴;以火车为S系,沿火车速度方向取x 轴.甲是这样测量运动中的火车长度的:在S系的同一时刻(t2 = t1),在地面划下火车前端A的位置x2和后端B的位置x 1 (如图1所示),然后测量x2和x1之间的距离L, 这就是甲测出的运动中的火车长度,即 对乙来说,火车是静止的,火车前端A的位置x2和后端B的位置x1之间的距离就是火车的静长L 0 ,即 且 因v c ,故由式(3)得出L L0 , 即火车的动长小于静长,这就是甲所观测到的长度收缩。乙是如何看待上述甲的测量呢? 乙观测到, 甲在t2时刻在地面上划下火车前端A的位置x2 , 在t1时刻在地面上划下火车后端B的位置x1,由洛伦兹变换有 这个结果表明:t2在先,t1在后.也就是说,在乙看来,甲并不是同时划下火车前后端的位置的,而是先( t2时刻) 划下火车前端A的位置x2 ,后( t1时刻) 划下火车后端B的位置x1, 如图2所示.所以,乙认为,甲少测了一段长度,这段长度为将式(3)代入式(4)得因此,乙认为,甲所测量的不是火车的长度, 而是比火车短L的某一长度:将式(5)代入式(6)得 乙还观测到,地面上沿火车进行方向的尺缩短了,缩短的因子为, 于是乙推知, 甲所观测到的火车长度应为这正是甲测得的结果. 由以上的分析可见,在S系看来,甲的观测是正确的,火车的长度收缩是真实的. 在S系看来,火车的长度是L0 ,并没有收缩, 而是甲的观测方法有问题(先测前端, 后测后端), 甲少测了一段长度L ,加上甲的尺缩短了,两种因素合在一起,使甲得出火车长度收缩的结论.第4章 振动一、选择题1(C),2(B),3(B),4(C),5(C),6(D),7(B),8(D),9(B),10(C)二、填空题(1). p、- p /2分、p/3(2). 、(3). (4). (5). (6). 0.05 m,-0.205p(或-36.9)(7). 3/4,(8). 291 Hz或309 Hz(9). 110-2 m,p/6(10). , 或 三、计算题1在一轻弹簧下端悬挂m0 = 100 g砝码时,弹簧伸长8 cm现在这根弹簧下端悬挂m = 250 g的物体,构成弹簧振子将物体从平衡位置向下拉动4 cm,并给以向上的21 cm/s的初速度(令这时t = 0)选x轴向下, 求振动方程的数值式解: k = m0g / Dl N/m cm ,f = 0.64 rad (SI) 2一木板在水平面上作简谐振动,振幅是12 cm,在距平衡位置6 cm处速率是24 cm/s如果一小物块置于振动木板上,由于静摩擦力的作用,小物块和木板一起运动(振动频率不变),当木板运动到最大位移处时,物块正好开始在木板上滑动,问物块与木板之间的静摩擦系数m为多少? 解:若从正最大位移处开始振动,则振动方程为 , 在cm处, cm/s 6 =12|cosw t|, 24=|-12 w sin w t|, 解以上二式得 rad/s , 木板在最大位移处最大,为 若mAw2稍稍大于mmg,则m开始在木板上滑动,取 3. 在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l0 = 1.2 cm而平衡再经拉动后,该小球在竖直方向作振幅为A = 2 cm的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式 解:设小球的质量为m,则弹簧的劲度系数 选平衡位置为原点,向下为正方向小球在x处时,根据牛顿第二定律得 将 代入整理后得 此振动为简谐振动,其角频率为 设振动表达式为 由题意: t = 0时,x0 = A=m,v0 = 0,解得 f = 0 4.一质量m = 0.25 kg的物体,在弹簧的力作用下沿x轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 Nm-1 (1) 求振动的周期T和角频率w (2) 如果振幅A =15 cm,t = 0时物体位于x = 7.5 cm处,且物体沿x轴反向运动,求初速v0及初相f (3) 写出振动的数值表达式解:(1) s (2) A = 15 cm,在 t = 0时,x0 = 7.5 cm,v 0 0 ,
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!