资源描述
xxxxxxxxxxxxx广播电视方向课程设计基于System View的2FSK的调制系统设计 学生姓名学 号所在学院专业名称班 级指导教师成 绩 Xxxxxxxxxxxxxxx二一五年五月xxxxxxxxxxxxxxxxxxxx课程设计报告课程设计任务书学生姓名学生学号学生专业学生班级指导教师职 称发题日期 2015年4月1日完成日期 2015年5月31日设计题目基于System View的2FSK的调制系统设计设计目的:1学习System View软件的使用。2使学生掌握利用工具软件来实现信号系统基本概念、基本原理的方法。具体任务及要求:1掌握System View软件的使用。2了解2FSK的调制解调基本概念。3在软件上进行仿真实验,并记录仿真的结果。4按照课程设计报告要求,完成设计报告,参加课程设计答辩。课程设计进度安排:序号内容安排时间1收集资料,确定实施方案4月15日前2软件设计5月15日前3整理资料,编写设计报告5月25日前4完成定稿,打印报告5月31日前课程设计参考文献:1 白木,周洁扩频通信的原理、工作方式、特点和应用电力系统通信2 罗卫兵,张捷.System View 动态系统分析及通信系统仿真设计西安电子技大学出版社 3 孙鹏勇直接序列扩频通信处理增益的分析辽宁工程技术大学学报 4 曾兴雯.乃安.献璞.扩展频谱通信及其多址技术.西安:西安电子科技大学出版社指导教师签字院长审核签字基于System View的2FSK的调制系统设计内容摘要:现代通信系统要求通信距离远,通信容量大、传输质量好。作为其关键技术之一的解调技术一直是人们研究的一个重要方向。从最早的模拟调幅调频技术的日趋完善,到现在数字调制技术的广泛应用。使得信息的传输更为有效和可靠。二进制数字振幅键控是一种古老的调制方式,也是各种数字调制的基础。本课程设计主要是利用SystemView仿真软件平台,设计一个FSK调制解调器系统,用示波器观察调制前后的信号波形,并将其记录下来,分析该系统的性能。通过SystemView的仿真功能模拟实际中的FSK解调。本课程设计研究的是基于SystemView的FSK解调系统设计。文中对解调的两种方法进行简单的介绍,进而对比,选择出合适的方法完成设计。关键词:System View 2FSK 调制系统System View is based on the modulation system 2FSKSummary: Modern communication systems require communication distance, large communication capacity, better transmission quality. As one of the key technologies demodulation technology it has been an important direction for researchers. From the earliest maturing AM FM analog technology, now widely used in digital modulation techniques. So that the transmission of information more efficient and reliable. Binary digital amplitude shift keying modulation is an old model, which is the basis of a variety of digital modulation. The course design is the use of System View simulation software platform to design a FSK modem system, using an oscilloscope modulated signal waveform before and after, and recorded, analyzed the performance of the system. System View simulation functional simulation of the actual FSK demodulation. This course is designed to study the FSK demodulation system based on System View. In this paper two methods demodulated brief introduction, and then compare the selected appropriate method to complete the design.Keywords: System View 2FSK Modulation system 目 录前言11 课程设计的任务与要求11.1 课程设计的任务11.2 课程设计的要求11.3 课程设计的研究基础12 FSK调制解调的方案22.1 2FSK调制的方案22.1.1 模拟调频法22.1.2 键控法键控法22.2 2FSK解调方案32.2.1 非相干解调32.2.2 相干解调42.3 2FSK数字系统解调原理43 System View的应用53.1 System View简介53.2 System View的操作步骤53.2.1 选择设置信号源(Source)53.2.2 选择设置分析窗(Sink)63.2.3 系统定时(System Time)63.3 System View的用户环境63.4 System View的基本使用73.5 System View的系统定时窗口74 基于System View的仿真84.1 2FSK调制84.1.1 调制原理图84.1.2 解调原理图94.1.3 2FSK调制解调模型94.2 2FSK的调制电路仿真154.2.1 调制电路仿真154.2.2 解调电路仿真175 结束语22参考文献2423基于System View的2FSK的调制系统设计前言当今社会通信技术的发展速度可谓日新月异,计算机的出现在现代通信技术的各种媒体中占有独特的地位,计算机在当今社会的众多领域里不仅为各种信息处理设备被使用,而且它与通信向结合,使电信业务更加丰富。随着人类经济和文化的发展,人们对通信技术性能的需求也越来越迫切,从而又打打推动了通信科学的发展。在通信理论上,先后形成了“过滤和预测理论”、“香浓信息论”、“纠错编码理论”、“信源统计特性理论”、“调制理论”等。通信作为社会的基本设施和必要条件,引起的世界各国的广泛关注,通信的目的就是从一方向另一方传送信息,给对方以信息,但是消息的传送一般都不是直接的,它必须借助于一定形式的信号才能便于远距离快速传输和进行各种处理。system view是一种电子仿真工具。它是一个信号级的系统仿真软件,主要用于电路与通信系统的设计和仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理,滤波器设计,直到复杂的通信系统等不同层次的设计。1 课程设计的任务与要求1.1 课程设计的任务仿真设计主要研究2FSK信号的调制解调系统的实现,完成对数字信号的调制及解调,使系统简单,并要调制解调过程容易实现,能正确的完成调制解调任务。由于FSK调制解调原理相对比较简单,作为数字通信原理的入门学,理解FSK后可以容易理解其他更复杂的调制系统,为以后的进一步发展打下基础。1.2 课程设计的要求仿真设计主要研究2FSK信号的调制解调系统的实现,完成对数字信号的调制及解调,使系统简单,并要调制解调过程容易实现,能正确的完成调制解调任务。由于FSK调制解调原理相对比较简单,作为数字通信原理的入门学,理解FSK后可以容易理解其他更复杂的调制系统,为以后的进一步发展打下基础。1.3 课程设计的研究基础数字频率调制又称频移键控(FsKFrequency Shift Keying),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK信号便是符号“1”对应于载频,而符号“0”对应于载频(与不同的另一载频)的已调波形,而且与之间的改变是瞬间完成的。System View 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,System View 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。System View 是一个用于现代工程与科- 3 - 学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,System View 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具2 FSK调制解调的方案2.1 2FSK调制的方案2FSK(二进制频移键控,Frequency Shift Keying)信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。我们可以认为,一个2FSK信号可以看成是两个不同载频的2FSK信号的叠加。从原理上讲,数字调频可用模拟调频法来实现,也可用键控法来实现。2.1.1 模拟调频法模拟调频法是利用一个矩形脉冲序列对一个载波进行调频,是频移键控通信方式早期采用的实现方法。用数字基带信号去控制一个振荡器的某种参数而达到改变振荡频率的目的。如图2-1所示。图2-1 相位连续FSK调制2.1.2 键控法键控法键控法键控法则是利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元Ts期间输出f1或f2两个载波之一,该方法就是在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元sT期间输出1f或2f两个载波之一。其原理如f1 门电路1 门电路2 相加倒相f2 基带信号输入图2-2所示,它将产生二进制FSK信号。图中,数字信号控制两个独立振荡器。门电路(即开关电路)和按数字信号的变化规律通断。若门打开,则门关闭故输出为1f,反之则输出2f。这种方法的特点是转换速度快、波形好,而且频率稳定度可以做得很高。频率键控法还可以借助数字电路来实现。图2-2 键控法电路图2.2 2FSK解调方案2FSK信号有多种解调方法,如非相干解调(包络检波法)、相干解调法、鉴频法、过零检测法及差分检波法等,下面就相干检测法、非相干检测法进行介绍。2.2.1 非相干解调 非相干解调2FSK信号的包络检波法解调方框图如图2-3所示,其可视为由两路2ASK解调电路组成。这里,两个带通滤波器(带宽相同,皆为相应的2ASK信号带宽;中心频率不同,分别为f1、f2起分路作用,用以分开两路2ASK信号,上支路对应,下支路对应,经包络检测后分别取出它们的包络及;抽样判决器起比较器作用,把两路包络信号同时送到抽样判决器进行比较,从而判决输出基带数字信号。若上、下支路及的抽样值分别用、表示,则抽样判决器的判断准则为图2-3 2FSK信号非相干解调方框图2.2.2 相干解调相干检测的具体解调电路是同步检波器,原理方框图如图2-4所示。图中两个带通滤波器的作用同于包络检波法,起分路作用。它们的输出分别与相应的同步相干载波相乘,再分别经低通滤波器滤掉二倍频信号,取出含基带数字信息的低频信号,抽样判决器在抽样脉冲到来时对两个低频信号的抽样值、进行比较判决(判决规则同于包络检波法),即可还原出基带数字信号。图2-4 2FSK信号相干解调方框图2.3 2FSK数字系统解调原理2FSK解调方式有相干解调方式和非相干解调方式两种,我们采用的是相干解调方式,下面详细介绍:已调信号由f1和f2调制而成,先用两个频率分别为f1、f2的带通滤波器对已调信号进行滤波,然后再分别将滤波后的信号与相应的载波f1、f2相乘进行相干解调,在分别经过低通滤波器,给定定时脉冲进行抽样判决。原理图2-5如下:图2-5 2FSK数字系统解调原理3 System View的应用3.1 System View简介利用System View,可以构造各种复杂的模拟、数字、数模混合系统,各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。用户在进行系统设计时,只需从System View配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。SystemView的库资源十分丰富,包括含若干图标的基本库(Main Library)及专业库(Optional Library),基本库中包括多种信号源、接收器、加法器、乘法器,各种函数运算器等;专业库有通讯(Communication)、逻辑(Logic)、数字信号处理(DSP)、射频/模拟(RF/Analog)等;它们特别适合于现代通信系统的设计、仿真和方案论证;并可进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析。在系统设计和仿真分析方面,System View还提供了一个真实而灵活的窗口用以检查、分析系统波形。在窗口内,可以通过鼠标方便地控制内部数据的图形放大、缩小、滚动等。另外,分析窗中还带有一个功能强大的“接收计算器”,可以完成对仿真运行结果的各种运算、谱分析、滤波。3.2 System View的操作步骤3.2.1 选择设置信号源(Source)选中该图标并按住鼠标左键将其拖至设计区内,这时所选中的图标会出现在设计区域中。双击设计窗口中的图标后,弹出的对话框,通过Periodic Noise/PN Aperiodic和Import按钮进行分类选择和调用。选中后单击对话框中的参数按钮Parameters,在出现的参数设置对话框中设置幅度、频率、相位。完成后分别单击参数设置和源库对话框的按钮OK,从而完成该图标的设置。3.2.2 选择设置分析窗(Sink)当需要对系统中各测试点或某一图标输出进行观察时,则应放置一个分析窗(Sink)图标,一般将其设置为“Analysis”属性。Analysis图标相当于示波器或频谱仪等仪器的作用,它是最常使用的分析型图标之一。具体操作和信号源设置类似。3.2.3 系统定时(System Time)System View系统是一个离散时间系统。在每次系统运行之前,首先需要设定一个系统频率。各种仿真系统运行时,是先对信号以系统频率进行采样,然后按照系统对信号的处理计算各个采样点的值,最后在输出时,在分析窗内,按要求画出各个点的值或拟合曲线。3.3 System View的用户环境进入System View 后,屏幕上首先出现设计窗口,所有系统的设计、搭建等基本操作,都是在设计窗口内完成的。在设计窗口中间的大片区域就是设计区域,也就是供用户搭建各种系统的地方。在设计窗口的最上端一行是下拉式命令菜单行,通过调用这些菜单可以执行System View的各项功能;设计窗口中菜单行的下面,紧邻在设计区域上端一行是工具栏,它包含了在系统设计、仿真中可能用到的各种操作按钮;在工具栏的最右端是提示信息,当鼠标置于某一工具按钮上时,在该处会显示对该按钮的说明和提示信息;紧邻在设计区域左端是各种器件图标库,下面介绍些常用的几个库图标,如表3-1所示。表3-1 常用图标3.4 System View的基本使用利用System View进行系统的设计、构建、仿真与分析,这一过程可概括为以下3个步骤:(1) 根据设计要求与系统原理画出系统原理框图。(2) 选择合适的图符和实现结构,把系统原理框图转化为System View模型,在System View设计窗口完成所设计的图形化仿真系统。(3) 运行仿真程序,分析仿真结果。3.5 System View的系统定时窗口System View系统是一个离散时间系统,也就是说,在每次系统运行之前,首先需要设定一个系统频率。各种系统在仿真时,首先对各信号以系统频率进行采样,然后按照系统对信号的处理计算各个采样点的值,最后输出时,在观察窗内按要求画出各个点的位置或拟合曲线。因此,系统定时是系统运行之前一个必不可少的步骤。在设计窗口中单击工具栏中的“System Time”(系统定时按钮),就能打开如图3-1所示的系统定时对话框。图3-1 系统定时对话框4 基于System View的仿真4.1 2FSK调制4.1.1 调制原理图图4-1调制原理图4.1.2 解调原理图图4-2解调原理图用同频同相得本地高频型号进行解调得到同步信号,在用低通滤波器滤除高频载波,通过反向器并通过加法器相加后,得到原始基带型号,通过抽样,保持,判决,得到准确的原始信号。4.1.3 2FSK调制解调模型图4-3 2FSK调制解调模型模块参数设置Token0 基带信号PN(频率为10HZ,电平2level,偏移=0)Token1半波整流器,门限电压=-1V Token2半波整流器,门限电压=-1V Token3 反相器Token4 乘法器Token5 乘法器Token6 载波正弦波发生器(频率1=200HZ)Token7 载波正弦波发生器(频率2=400HZ)Token8 加法器Token9 观察窗Token10 观察窗Token11 观察窗Token12 观察窗Token13 观察窗Token14 观察窗Token15载波正弦波发生器(频率1=200HZ)Token16载波正弦波发生器(频率2=400HZ)Token17乘法器Token18乘法器Token19 模拟低通滤波器(截止频率1=200HZ)Token20模拟低通滤波器(截止频率1=200HZ)Token21加法器Token22反相器Token23 观察窗Token24 观察窗Token25 观察窗Token27 观察窗Token28抽样器(抽样频率=1000HZ)Token29 保持器Token30 判决器(ab True Output=1v False=-1v)Token31 观察窗Token32 比较电平发生器(电平=0V 频率=0HZ)Token33 观察窗Token34 观察窗运行时间设置运行时间=2s 采样频率=1000HZ 运行系统,利用观察窗观察各波形形状4.1.4 仿真结果图4-4 原波形(sink9)图4-5 频率f1(sink13)图4-6 频率f2(sink14)图4-7 半波整流后加到高频载波上的波形(sink11)图4-8 半波整流后加到高频载波上的波形(sink10)图4-9 2FSK调制波形(sink12)图4-10 解调后波形(sink23)图4-11 经过抽样判决后的最终波形(sink31)图4-12 功率谱改变参数Token6载波正弦波发生器(频率f1=40HZ)Token7 载波正弦波发生器(频率f2=80HZ)Token15 载波正弦波发生器(频率f1=40HZ)Token16 载波正弦波发生器(频率f2=80HZ)得到各频谱图为 图3-13 各频谱图图4-14 输出功率谱4.2 2FSK的调制电路仿真4.2.1 调制电路仿真根据模拟调频法和键控法的原理图,利用System View软件进行仿真设计,得到图4-15(我们把调频法与键控法的电路合成在一张电路图上,这样产生的波形易于观察和对比)图4-15 2FSK信号产生的两种方法参数设置:Token 0:基带信号-PN码序列将参数设置为Rate=20HZ, Amplitude(幅度)= 0.5v, Offset(偏移)= 0.5v Token 1:频率调制 FM Token 2、6:信号接收分析器Token 3:键控开关Token 4、5: 载波-正弦波发生器(频率分别为50HZ、100Hz)检查仿真电路图和参数设置无误后,进行仿真运行,运行时间设置为:Start Time: 0秒;Stop Time: 255e-3秒;采样频率:Sample Rate:1000Hz。如图4-16所示图4-16 运行时间设置将电路图连接完毕后,设置这个元器件的参数,点开运行时间设置窗口,确保这个参数设置完毕,点击仿真按钮,得到调制信号与功率频谱图如下图所示。图4-17 调频法2FSK的输出图4-18键控法2FSK的输出图4-19 键控法2FSK的功率谱图图 4-20 调频法2FSK的功率谱图分析:从上到下依次是调制信号波形、频率为f1的已调信号波形,频率为f2的已调信号波形,2FSK信号波形。由图中可以观察到2FSK信号就是两个2ASK信号叠加而成,因此2FSK频谱可以近似表示成频率分布为f1和f2的两个2ASK频谱的组合。其中两个波形不同且下凹的点为相位不连续点。4.2.2 解调电路仿真非相干解调法根据非相干解调法(包络检波法)法的原理图,利用System View软件进行仿真设计,得到图4-21。图4-21 非相干解调电路图参数设置:Token 0: NP码元,Amplitude=0.5V,Ofsetf=0.5V,Rate=10Hz,Levels=2;Token 1、2:载波,正弦波发生器(频率分别为100Hz和150Hz)Token 3: 单刀双掷开关Token 4: 加法器Token 5: 高斯噪声 std=0.5v Token 6、7: 线性系统滤波器Token 8、9:半波整流Token 10、11:信号接收分析器Token 12、13: 线性系统滤波器Token 14: 模拟比较器Token 15: 延迟器检查仿真电路图和参数设置无误后,进行仿真运行,运行时间设置为:Start Time: 0秒;Stop Time: 255e-3秒;采样频率:Sample Rate:1000Hz。如图4-22所示图4-22 运行时间设置窗口将电路图连接完毕后,设置这个元器件的参数,点开运行时间设置窗口,确保这个参数设置完毕,点击仿真按钮,得到调制信号与功率频谱图如下图所示。图4-23 非相干解调输出图4-24 原始波形图4-25 非相干解调功率谱图图4-26 原始波形功率谱图分析:原始波形与非相干解调出的波形相同,证明此事解调成功,仿真成功。将两路信号接入高低电平值分别设置为1 V 和-1 V ,选择输出输出的信号就将是解调信号根据相干解调法法的原理图,利用System View软件进行仿真设计,得到图4-27所示图4-27 相干解调电路参数设置:Token 0: NP码元,Amplitude=0.5V,Ofsetf=0.5V,Rate=10Hz,Levels=2;Token 1、2、15、16:载波,正弦波发生器(频率分别为100Hz和150Hz 100Hz和150Hz)Token 3: 单刀双掷开关Token 4、17: 加法器Token 5: 高斯噪声 std=0.5v Token 6、7、10、11: 线性系统滤波器Token 12: 延迟器Token 13、14:乘法器Token 18:缓冲器检查仿真电路图和参数设置无误后,进行仿真运行,运行时间设置为:Start Time: 0秒;Stop Time: 4.095秒;采样频率:Sample Rate:1000Hz。如图4-28所示图4-28 运行时间设置窗口将电路图连接完毕后,设置这个元器件的参数,点开运行时间设置窗口,确保这个参数设置完毕,点击仿真按钮,得到调制信号与功率频谱图如下图所示图4-29 相干解调输出图4-30 原始波形图4-31 相干解调功率谱图图4-32 原始波形功率谱图分析:通过相干解调输出波形,说明解调成功。从仿真结果中我们看到,产生的2FSK信号通过相干解调完整的恢复为原来的基带信号。这里将2FSK信号分解为上下两路2ASK信号分别进行解调,然后进行判决。抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限。判决规则就应与解调规程相呼应,调制时若规定“1”符号载波对应载波频率f1,则接收时上支路的样值大,应判为“1”;反之则判为“0”。当传输信道为随参信道时,则2FSK具有更好的适应能力。5 结束语通过这次的课程设计,我学到很多东西,在开始搜集资料的时候,我根本就无从下手,后来我在网上和图书馆查阅了许多关于System View软件的资料,初步了解了System View软件的基本概念及对System View软件的应用。在这篇论文中,简单的介绍了FSK的调制解调方案。还有更重要的一点,通过这次写作,我基本掌握了课程设计的最基本的格式要求,这对我以后的毕业设计有很大的帮助。这次的课程设计完成时间将近两个月,在此期间,我学到很多以前不曾了解的知识。拓宽了我的知识面。这些都要感谢我的指导老师,感谢老师能给我这次机会。要特别感谢我的指导老师徐金玉老师在我写作过程中对我的指导和帮助。如果没有老师的指导,我不可能这么顺利地完成这次课程设计。另外,同寝室小伙伴们的帮助也是不可忽略的,在我搜集资料的时候,是同寝室同学和我一起,帮我搜集整理,在我遇到困难时是他们给我加油打气,让我对这次的课程设计充满信心。衷心地感谢你们!谢谢!参考文献1 白木,周洁扩频通信的原理、工作方式、特点和应用电力系统通信,2000:P15P28 2 罗卫兵,张捷.System View 动态系统分析及通信系统仿真设计西安电子科技大学出版社,2000:P16P33 3 孙鹏勇直接序列扩频通信处理增益的分析辽宁工程技术大学学报(自然科学版),2000:P19P20 4 曾兴雯.乃安.献璞.扩展频谱通信及其多址技术.西安:西安电子科技大学出版社,2000:P18P20成绩评定表学生姓名学生学号学生专业学生班级指导教师职 称设计题目基于System View的2FSK的调制系统设计评语评定成绩等级分数指导教师签字: 年 月 日说明:分数采用百分制,相应的等级为:优:90100:良:8089;中:7079;及格:6069;不及格:60分以下。
展开阅读全文