D泰勒公式学习教案

上传人:牛*** 文档编号:88530837 上传时间:2022-05-11 格式:PPTX 页数:30 大小:1.05MB
返回 下载 相关 举报
D泰勒公式学习教案_第1页
第1页 / 共30页
D泰勒公式学习教案_第2页
第2页 / 共30页
D泰勒公式学习教案_第3页
第3页 / 共30页
点击查看更多>>
资源描述
会计学1D泰勒公式泰勒公式特点:)(01xp)(0 xf)(0 xf )(xf)()(000 xxxfxf)(1xp以直代曲以直代曲0 x)(1xp)(01xp在微分应用中已知近似公式 :需要解决的问题如何提高精度 ?如何估计误差 ?xx 的一次多项式xy)(xfy O第1页/共30页要求要求:, )(xpn)(0!212xpan , )(0 xf ,)(0)(!1xpannnn)(0)(xfn故)(xpn)(0 xf)(00 xxxf!21!1nnnxxxf)(00)(!1n200)(xxxf !21令)(xpn则)(xpn )(xpnnan!)()(xpnn)(00 xpan, )(0 xf, )()(00 xfxpn)(01xpan, )(0 xf 1a)(202xxa10)(nnxxan2!2 a20)() 1(nnxxann, )()(00 xfxpn)()(,0)(0)(xfxpnnn0annxxaxxaxxa)()()(020201第2页/共30页)0(之间与在nx )( )(10nnxxxR )(2) 1( )(0)(xnRnnnn)()()(xpxfxRnn令(称为余项) ,)(0 xRn)(0 xRn0)(0)(xRnn10)()(nnxxxRnnxnR)(1()(011 )(1( )(011nnxnR1022)() 1()( nnxnnR! ) 1()()1(nRnn则有)(0 xRn0)(0 xRn0)(0)(xRnn0 x)01(之间与在xx)102(之间与在x第3页/共30页)()()(xpxfxRnn10)()(nnxxxR! ) 1()()1(nRnn)0(之间与在xx,0)()1(xpnn10)1()(! ) 1()()(nnnxxnfxR)()()1()1(xfxRnnn时的某邻域内当在Mxfxn)()1(0)0(之间与在xx10! ) 1()(nnxxnMxR)()()(00 xxxxoxRnn第4页/共30页公式 称为 的 n 阶泰勒公式阶泰勒公式 .)(xf公式 称为n 阶泰勒公式的拉格朗日余项拉格朗日余项 .内具有的某开区间在包含若),()(0baxxf1n直到阶的导数 ,),(bax时, 有)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中10)1()(! ) 1()()(nnnxxnfxR则当)0(之间与在xx泰勒 第5页/共30页公式 称为n 阶泰勒公式的佩亚诺佩亚诺(Peano) 余项余项 .)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(0nxxo)()(0nnxxoxR注意到* 可以证明: 阶的导数有直到在点nxxf0)( 式成立第6页/共30页(1) 当 n = 0 时, 泰勒公式变为)(xf)(0 xf)(0 xxf(2) 当 n = 1 时, 泰勒公式变为给出拉格朗日中值定理)(xf)(0 xf)(00 xxxf20)(!2)(xxf 可见)(xf)(0 xf)(00 xxxf201)(!2)()(xxfxR 误差)(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)(fd)0(之间与在xx)0(之间与在xx)0(之间与在xx)0(之间与在xx第7页/共30页称为麦克劳林麦克劳林( Maclaurin )公式公式 ., 00 x则有)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()()(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)()0(之间与在xx)(xf)0(fxf)0( ,)()1(Mxfn则有误差估计式1! ) 1()(nnxnMxR2!2)0(xf nnxnf!)0()(若在公式成立的区间上麦克劳林 由此得近似公式, ) 10(x记第8页/共30页xxfe)() 1 (,e)()(xkxf),2, 1(1)0()(kfkxe1x!33x!nxn)(xRn!22x其中)(xRn!) 1( n) 10(1nxxe)(xf)0(fxf)0( 1)1(!) 1()(nnxnxf2!2)0(xf nnxnf!)0()(麦克劳林公式麦克劳林公式 ) 10(第9页/共30页)sin(212mx)cos() 1(xm)sin( xxxfsin)()2()()(xfkxsinx!33x!55x! ) 12(12mxm)(2xRm其中)(2xRm2k2sin)0()(kfkmk2,012 mk,) 1(1m),2, 1(m1) 1(m) 10(12mx!) 12(m)(xf)0(fxf)0( 1)1(!) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麦克劳林公式麦克劳林公式 第10页/共30页麦克劳林公式麦克劳林公式 ! )2(2mxmxxfcos)()3(类似可得xcos1!22x!44x)(12xRm其中)(12xRm! )22(m)cos() 1(1xm) 10(m) 1(22mx)(xf)0(fxf)0( 1)1(!) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(第11页/共30页) 1(,)1 ()()4(xxxf)()(xfk)1 (x1x2xnx)(xRn其中)(xRn11)1 (! ) 1()() 1(nnxxnn) 10(kxk)1)(1() 1() 1() 1()0()(kfk),2, 1(k!2 ) 1(! n) 1() 1(n)(xf)0(fxf)0( 1)1(!) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麦克劳林公式麦克劳林公式 第12页/共30页) 1()1ln()()5(xxxf已知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1 (1) 1(nnnxxn) 10(1) 1(n因此可得)()(xfkkkxk)1 (! ) 1() 1(1),2, 1(k)(xf)0(fxf)0( 1)1(!) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麦克劳林公式麦克劳林公式 第13页/共30页1. 在近似计算中的应用在近似计算中的应用 误差1! ) 1()(nnxnMxRM 为)() 1(xfn在包含 0 , x 的某区间上的上界.需解问题的类型:1) 已知 x 和误差限 , 要求确定项数 n ;2) 已知项数 n 和 x , 计算近似值并估计误差;3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.)(xf)0(fxf)0( 2!2)0(xf nnxnf!)0()(第14页/共30页.106解解: 已知xe!) 1( nxe1nx令 x = 1 , 得e) 10(!) 1(e!1!2111nn) 10(由于,3ee0欲使) 1 (nR! ) 1(3n610由计算可知当 n = 9 时上式成立 ,因此e!91!21112.718282xe1x!33x!nxn!22x的麦克劳林公式为第15页/共30页本例若每项四舍五入到小数点后 6 位,则 各项舍入误差之和不超过,105 . 076总误差限为6105 . 076106105这时得到的近似值不能保证不能保证误差不超过.106因此计算时中间结果应比精度要求多取一位 .e!91!2111第16页/共30页!21cos2xx计算 cos x 的近似值,使其精确到 0.005 , 试确定 x 的适用范围.解解: 近似公式的误差)cos(!4)(43xxxR244x令005. 0244x解得588. 0 x即当588. 0 x时, 由给定的近似公式计算的结果能准确到 0.005 .第17页/共30页例例3、计算.3cos2elim402xxxx)(!211e4422xoxxx)(!4!21cos542xoxxx)()!412!21(3cos2e442xoxxx127)(lim4441270 xxoxx解解:原式第四节 2. 利用泰勒公式求极限利用泰勒公式求极限第18页/共30页11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(例例4. 证明).0(82112xxxx证证:21)1 (1xx21x2) 121(21!21x325)1)(221)(121(21!31xx) 10(3225)1 (161821xxxx)0(82112xxxx+第19页/共30页1. 泰勒公式泰勒公式其中余项)(0nxxo当00 x时为麦克劳林公式麦克劳林公式 .)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn10)1()(! ) 1()()(nnnxxnfxR)0(之间与在xx第20页/共30页,ex, )1ln(x,sinx,cosx)1 (x3. 泰勒公式的应用泰勒公式的应用(1) 近似计算(3) 其他应用求极限 , 证明不等式 等.(2) 利用多项式逼近函数 xsin例如例如 第21页/共30页12! ) 12() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxo!33xxy!5!353xxxy!7!5!3753xxxxyxysinxy xsin6422464224xyO第22页/共30页12! ) 12() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxoxsinxysin!9!7!5!39753xxxxxy!11!9!7!5!3119753xxxxxxy642246Ox4224y第23页/共30页例例4. 求.43443lim20 xxxx解解:由于x431243 x21)1 (243x 2)(14321x!21) 1(2121243)( x)(2xo用洛必达法则不方便 !2x用泰勒公式将分子展到项,11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(x3421)1 (243x220 limxx 原式)(2216921xox 329x43)(2216941xox 2x43)(2216941xox 思考与练习思考与练习 第24页/共30页英国数学家,他早期是牛顿学派最优秀的代表人物之一 , 重要著作有: 正的和反的增量方法(1715) 线性透视论(1719) 他在1712 年就得到了现代形式的泰勒公式 .他是有限差分理论的奠基人 .第25页/共30页英国数学家,著作有:流数论(1742)有机几何学(1720)代数论(1742)在第一本著作中给出了后人以他的名字命名的麦克劳林级数麦克劳林级数 .第26页/共30页, 1 ,0)(上具有三阶连续导数在设函数xf, 0)(,2) 1 (,1)0(21fff)(xf)(21之间与在其中x, 1,0 x证证: 由题设对321)(!31 xf)(21f221)( x)(! 2121f )(2121xf有)(21f221)( x)(!2121f 321)(!31 xf内至少存在证明) 1,0(且得分别令, 1,0 x,( )24. f一使点第27页/共30页)(21之间与在其中x)()(21fxf221)( x)(!2121f 321)(!31 xf1( )24f( )24f), 0(211)(21f)1 ,(2123211)(! 3)( f3212)(! 3)(f )0(1f)(21f22121)(! 2)( f) 1 (2f22121)(! 2)(f 1下式减上式 , 得211()()48ff211()()48ff) 10(令21( )max () ,() )fff第28页/共30页e) 10(!) 1(e!1!2111nn两边同乘 n !e !n= 整数 +) 10(1en假设 e 为有理数qp( p , q 为正整数) ,则当 时,qn 等式左边为整数;矛盾 !证证:2n 时,当故 e 为无理数 .等式右边不可能为整数.第29页/共30页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!